Jump to content

Page:Popular Science Monthly Volume 10.djvu/541

From Wikisource
This page has been validated.
FORMATION OF RAINDROPS AND HAILSTONES.
523

so as to form still larger particles which will move with greater velocity, and more quickly overtaking the particles in front of them will add to their size at an increasing rate.

Under such circumstances, therefore, the cloud would be converted into rain or hail according as the particles were water or ice.

The size of the drops from such a cloud would depend simply on the quantity of water suspended in the space swept through by the drop in its descent, that is to say, on the density and thickness of the cloud below the point from which the drops started.

The author's object is to suggest that this is the actual way in which raindrops and hailstones are formed. He was first led to this conclusion from observing closely the structure of ordinary hailstones. Although to the casual observer hailstones may appear to have no particular shape except that of more or less imperfect spheres, on closer inspection they are seen all to partake more or less of a conical

Fig. 2.—Broken Hailstone.

form with a rounded base like the sector of a sphere. In texture they have the appearance of an aggregation of minute particles of ice fitting closely together, but without any crystallization such as that seen in the snow-flake, although the surface of the cone is striated, the striæ radiating from the vertex. Such a form and texture as this is exactly what would result if the stones were formed in the manner described above. When a particle which ultimately formed the vertex of the cone started on its downward descent and encountered other particles on its lower face, they would adhere to it, however slightly. The mass, therefore, would grow in thickness downward; and as some of the particles would strike the face so close to the edge that they would overhang, the lower face would continually grow broader, and a conical form be given to the mass above.

When found on the ground the hailstones are generally imperfect; and besides such bruises as may be accounted for by the fall, many of them appear to have been imperfect before reaching the ground. Such deformities, however, may be easily accounted for. The larger stones fall faster than those which are smaller, and consequently may