Jump to content

Page:Popular Science Monthly Volume 11.djvu/361

From Wikisource
This page has been validated.
THE MATERIAL RESOURCES OF LIFE.
347

of a continent, and then, shedding their water on the Andes, leave their ammonia (it may be supposed) to find its way by some means to the valleys of the western slope.

Again, these same mountain-valleys of Peru may claim to have given the world still another token of unexampled sources of nourishment, in the growth of the cinchona-tree, bearing the richest stock of nitrogenous bases in the vegetable world. It seems, indeed, more than a coincidence that this narrow, rainless, wind-nurtured slope of land should send to all the earth three such eminent resources as Peruvian nitre, Peruvian guano, and Peruvian bark.

Another of the materials adequate for no more than the needs of life is phosphorus. This element so far differs from nitrogen that it is not found uncombined in Nature, and if separated by art it immediately enters into combination on exposure to the air. It occurs chiefly as phosphate of lime, taken from the mineral kingdom by plants and also by animals. The hard part of bone is about nine-tenths phosphate, and phosphorus is an element of molecules organized into muscle and nerve.

The proportion of phosphates in the crust of the earth below organic remains is very slight, insufficient for the support of the higher forms of vegetable or animal life. It has been concentrated and gathered into the soil by the selective agency of the organic world, as it continues to be concentrated from the soil by each individual plant, and from vegetable products by each individual animal. Nearly all the phosphorus accessible on the planet has been a constituent of living bodies. Its proportion in the soil is a main factor in the growth of cereal grains. Already, and with the stretch of land to the westward, bone-earth and phosphatic guanos are well known in American markets. When phosphates fail at the root of the plant, grain fails at the mill; and when, from waste at the mill, phosphates fail in the bread, the bones and the teeth fail in growing bodies. The improvidence that leaves excretory phosphates to be washed away to the salt sea, farther from the reach of life than they were in the primitive rocks, is an improvidence that prepares an inheritance of poverty for after-generations. And the ruthlessness that permits the purveyors of food to sift phosphates from the food of men does its part to enfeeble the present generation.

There remains to notice another representative of the adequate resources, potassium. The statements made as to the supply of phosphorus, with some reservation, become true for potassium. Certain of the rocks contain a proportion of it, but from insolubility this is slowly available, and is insufficient for the needs of higher organic life. The soils contain more, because the organic world has gleaned for the soil. Potassa and soda are two alkalies which replace each other in the laboratory at the convenience of the chemist, but, in the choosing of the living cell, one of these is always taken and the other left.