though the sun pours but about a twenty-seventh part of the heat on Jupiter, and but about a hundredth part on Saturn, which we receive from his rays. The outline of Jupiter, as indicated by the apparent position of a satellite close to his disk, expands and contracts through thousands of miles, yet the theory that Jupiter is still intensely hot must not for a moment be entertained, though the expansion and contraction of the solid crust of a cool planet through so enormous a range would vaporize a portion of its mass exceeding many times the entire volume of our earth. Saturn is seen by Sir W. Herschel and Sir J. Herschel, by Sir G. Airy, Coolidge, the Bonds, and a host of other observers, to assume from time to time the square-shouldered aspect, a change which—to be discernible from our distant standpoint—would imply the expansion and contraction of whole zones of Saturn's surface through 4,000 or 5,000 miles at least; yet it is better to believe that these stupendous changes have affected the solid crust of a planet like our earth than to admit the possibility that the outline we measure is not that of the planet itself, but of layers of cloud raised to a vast height in the deep atmosphere surrounding a planet still glowing with its primeval fires.
The phenomena I am now about to consider belong to the same category. They are utterly inexplicable, or only explicable by the most sensational assumptions as to the processes taking place on Jupiter, if we adopt the old theory of Jupiter's condition; while if we regard Jupiter as an intensely-heated planet surrounded by and entirely concealed within a cloud-laden atmosphere several thousand miles in depth, they at once admit of the most simple and natural explanation.
It has, of course, long been known that the belts of Jupiter are phenomena of his atmosphere, not of his surface. The belts of lightest tint have been regarded as belts of cloud, and the darker belts as either the real surface of the planet seen between the cloud-belts, or else as lower cloud-layers, appearing darker because in shadow. Accordingly, when features of the belts have been watched in their rotational circuit, it has been clearly recognized that the rotation determined in this way is not necessarily or probably the true rotation of the planet itself. Further, it has been proved, beyond all possibility of question, that some at least among the spots upon the planet's belts have a motion of their own; for whenever two spots in different Jovian latitudes have been observed, it has been almost constantly noticed that the one nearer the equator has had a greater rotation rate than the other. Again, it has sometimes happened that instead of two spots, in different latitudes, a well-defined dark streak or opening, having its two extremities in different latitudes, has remained long enough to be observed during several rotations of the planet. In these cases it has been observed that the end of the streak nearest the equator has traveled fastest, not only absolutely, but in longitude, insomuch that the position of the streak has notably altered.