Jump to content

Page:Popular Science Monthly Volume 14.djvu/329

From Wikisource
This page has been validated.
BEGINNING OF NERVES.
315

jelly-fish and a frog, up even to the most complex of our psychological processes, we have in this recently discovered principle of the summation of stimuli a very remarkable uniformity of occurrence.

Hitherto light has never been actually proved to act as a direct stimulus to ganglionic matter. It is therefore of interest to note that it thus acts in the case of some species of Meduscæ. Sarsicæ, for instance, almost invariably respond to a single flash by giving one or more contractions. If the animal is vigorous, the effect of a momentary flash thrown upon it during one of the natural pauses is immediately to originate a bout of swimming; but if the animal is non-vigorous, it usually gives only one contraction in response to every flash. That it is light per se, and not the sudden transition from darkness to light, which here acts as the stimulus, is proved by the result of the converse experiment, viz., placing a vigorous specimen in sunlight, waiting till the middle of one of the natural pauses, and then suddenly darkening. In no case did I thus obtain any response. Indeed, the effect of this converse experiment is rather that of inhibiting contractions; for if the sunlight be suddenly shut off during the occurrence of a swimming-bout, it frequently happens that the quiescent stage immediately sets in. Again, in a general way, it is observable that Sarsiæ are more active in the light than they are in the dark: it appears as though light acts toward these animals as a constant stimulus. Nevertheless, when the flashing method of experimentation is employed, it is observable that the stimulating effect of the flashes progressively declines with their repetition. The time during which the deleterious effect of one such stimulus on its successor lasts appears to be about a quarter of a minute. The period of latent stimulation is, judging by the eye, as short in the case of luminous as in that of other stimulation; but when the efficacy of luminous stimulation is being diminished by frequent repetition, the period of latency is very much prolonged.

The question as to what part of the organism it is which is thus susceptible of luminous stimulation, was easily determined by detaching various parts of the organism and experimenting with them separately. I thus found that it is the marginal bodies alone which are thus affected by light; for, when these are removed, the swimming-bell, though still able (in the case of Sarsia)[1] to contract spontaneously, no longer responds to luminous stimulation; whereas, if only one marginal body be left in situ, or if the severed margin, or even a single excised marginal body, be experimented on, unfailing response to this mode of stimulation may be obtained.

Responses to luminous stimulation occur in all cases equally well, whether the light employed be direct sunlight, diffused daylight, polar--

  1. In all the naked-eyed division of Meduscæ, to which Sarsia belongs, total paralysis of the bell can only be obtained by removing the entire margin; but in all the covered-eyed division, to which Aurelia belongs, paralysis of the bell ensues on removing the marginal bodies alone.