Jump to content

Page:Popular Science Monthly Volume 15.djvu/174

From Wikisource
This page has been validated.
162
THE POPULAR SCIENCE MONTHLY.

to advantage. With the aid of such a cheap method of projection, a grammar school master can give quite an extended course in physics with simple apparatus. He can draw his own diagrams on smoked glass, fixing the drawing by exposing it to the vapor of alcohol, which is evaporated from a shallow dish; and for the money which is expended for a lime-light apparatus enough apparatus can be bought which, supplemented by a water or a kerosene lantern, would illustrate a full course of elementary lectures on physics. In many school collections of apparatus, a few expensive instruments will be found: an air-pump; a Holtz electrical machine; a large induction coil. One or two of such instruments form the rallying point of the department of physics, and are accompanied by meager and disjointed apparatus. The student collects, so to speak, his thoughts about the picture of a complicated machine; his ideas of the pressure of gases or rarefied air are complicated by the imperfect remembrance of certain valves. Electricity of high tension means something evoked by an electrical machine. These pieces of apparatus which I have mentioned form a salient point of attack upon the system of instruction in physics too common in many schools. A good air-pump is difficult to keep in order, and finds its true place only in the private laboratory of an investigator, or in a college collection of apparatus. In the secondary grade of schools some form of Sprengel's pump, or, where there is an available head of water, an aspirator, will illustrate varying pressures sufficiently well. The new Holtz machine which schools are anxious to possess can only serve as a toy, for the theory of its working is very hard to comprehend even by those who have studied the subject in mature years.

The modern view of the physical universe is that there is no such state as rest: the particles of a gas are in an incessant state of motion, and it can be maintained that when a stone rests upon a table it is not at rest; for it is forced downward by the action of gravitation through a very small distance, and the elasticity of its support tends to move it upward through the same distance. The term statics is apt to be misleading, and the best-writers on science of to-day begin treatises on natural philosophy with the subject of dynamics or forces in motion. In no subject, however, is the division into statics and dynamics so illogical as in the subject of electricity. In most schools a student begins the study of this subject with frictional electricity and the electrical machine. An advanced student in a university pursues the opposite plan, and approaches the subject, even if it be for the first time, from the standpoint of the voltaic cell, and traces the development of the force up to the point of the generation of electricity similar to that produced by an electrical machine. Very little knowledge can be obtained from the exhibition of toys like dancing pith-balls, insulated stools, miser's plates, and apparatus for obtaining shocks.