Jump to content

Page:Popular Science Monthly Volume 15.djvu/466

From Wikisource
This page has been validated.
450
THE POPULAR SCIENCE MONTHLY.

nine minutes (i. e., nearly half a degree) farther on in the direction in which the earth is traveling. In other words, the meteors do not describe exactly the same orbit over and over again: their path in one revolution is not exactly the same as their path in the next revolution, although very close to it. Thus, their path in A.D. 126 was that which is represented by the strong oval line in the diagram, but, in the seventeen centuries which had since elapsed, it has gradually shifted round into the position represented by the dotted ellipse. This kind of motion is well known to astronomers, and its cause is well known. It would not happen if the sun were the only body attracting the meteors, but arises because the planets also draw them in other directions; and although the attraction of the planets is very weak compared with the immense power of the sun, still they are able to drag the meteors a little out of their course round the sun, and in this way occasion that shifting round of the orbit of which we are speaking. Now, in the case of meteors which are really traveling in the large orbit, this shifting of the orbit must be due to the attraction of the planets Jupiter, Saturn, Uranus, and the Earth, while, if they had traveled in any of the four smaller orbits, the planets that would be near enough and large enough to act sensibly upon them would be the Earth, Venus, and Jupiter. Accordingly, if any one could be found able to calculate how much effect would be produced in each of the five cases, the calculated amount of shifting of the orbit could be compared with the observed amount, which is 29' in thirty-three and a quarter years, and this would at once tell which of the five possible orbits is the true one.

These papers of Professor Newton's were published in 1864. Before the computations which he had indicated could be attempted, it was necessary that the direction in which the meteors enter the earth's atmosphere should be known much more accurately than it then was, in order to enable astronomers to compute the exact forms and positions of the five possible orbits. This observation, then, was of the greatest importance in 1866, and it was on this account that all the astronomers on that occasion devoted nearly all their efforts to determining with the utmost precision the exact point of the constellation Leo from which the meteors seemed to radiate. This important direction was ascertained during the great meteoric shower on the morning of the 14th of November, 1866, and immediately after Professor Adams and his two assistants in the Cambridge Observatory set to work at their arduous task. This great calculation required the solution of a problem in mechanics which had never before been attempted, and involved an immense amount of tedious labor. Amid all these difficulties Professor Adams triumphed; and after months of toil he was able to announce in the following March that, if the meteors are moving in the large orbit, Jupiter would produce a shifting of the orbit in each revolution amounting to 20', the attraction of Saturn