ing a little glass railway running along it from one end to the other. The axle of a small wheel revolves on the rails, the spokes of the wheel carrying wide mica paddles. At each end of the tube, and rather above the center, is an aluminium pole, so that whichever pole is made negative the stream of radiant matter darts from it along the tube, and striking the upper vanes of the little paddle-wheel, causes it to turn round and travel along the railway. By reversing the poles I can arrest the wheel and send it the reverse way; and if I gently incline the tube, the force of impact is observed to be sufficient even to drive the wheel up hill.
This experiment, therefore, shows that the molecular stream from the negative pole is able to move any light object in front of it.
The molecules being driven violently from the pole, there should be a recoil of the pole from the molecules, and by arranging an apparatus so as to have the negative pole movable and the body receiving the impact of the radiant matter fixed, this recoil can be rendered sensible. In appearance the apparatus (Fig. 12) is not unlike an ordinary
Fig. 12. | Fig. 13. |
radiometer with aluminium disks for vanes, each disk coated on one side with a film of mica. The fly is supported by a hard steel instead of glass cup, and the needle-point on which it works is connected by means of a wire with a platinum terminal sealed into the glass. At the top of the radiometer-bulb a second terminal is sealed in. The radiometer, therefore, can be connected with an induction-coil, the movable fly being made the negative pole.