not practicable to have these aids, so that the back of the speculum is cast quite flat, and usually rests on a flat plate of metal. By an ingenious method of balanced arms Mr. Common has contrived to support the speculum so that it is perfectly free from flexure. Thus the first point was secured.
The second point, or the method by which the telescope should be mounted, was a problem which required long and serious consideration. Mr. Common devised a new and most ingenious method, which, after long consideration, he thought would furnish a means of steadily supporting the telescope. In this steadiness is most essential, the slightest vibration, vibrations absolutely invisible to the eye, would ruin the performance of a telescope. The weight of the moving part of the telescope amounts probably to four or five tons, and this has to be kept in motion by a clock, yet it must not be liable to the least tremor or vibration. The difficulty of the problem is evident. His plan of a mounting was submitted by Mr. Common, for criticism, to several well-known astronomers, who might be supposed competent to advise on this subject. As might have been expected, very diverse opinions were expressed; at most, one seemed to decidedly favor the plan, others seemed doubtful, and more than one were decidedly adverse. The result was, to leave that matter much as it stood at first, so that Mr. Common decided to persevere in his original design. The success which has crowned his labors shows that he was correct in his judgment. It would be impossible to describe the method of mounting employed without the aid of several detailed drawings, but reference may be made to one ingenious point. As in all equatorial mountings, nearly the entire weight of the moving part of the telescope (in the present telescope five tons) rests on the bottom pivot of the polar axis. This pivot, therefore, is exposed to enormous friction, and is a common cause of vibration. To obviate this, Mr. Common, by an ingenious arrangement, supports the whole polar axis in mercury, thus taking off nearly the entire friction, and the whole instrument moves as if it were floating. By this means he is enabled to drive the whole telescope with an ordinary train of clockwork, regulated by the governor, which he had invented for his smaller telescope.
The last two points specified above are obtained by making the observatory itself the ladder by which you approach the eye-end of the telescope, and the whole observatory revolves on iron wheels running on a circular railway. By means of a wheel on your left, you can raise or lower yourself at pleasure, and observe with the telescope in any position. The whole observatory only requires moving about once in two hours, and can be moved with ease by one hand.
Within a year of its being begun, the telescope was rapidly approaching its completion. The great speculum had been brought to the right shape, and was partially polished, and every day the an-