to draw water from a depth of thirty or forty feet, because it would cut off the supply due to the rains which do not sink deeper than three feet!" But the Professor had not said that "rains do not sink deeper than three feet." He had, indeed, said that one intelligent manufacturer, Mr. Dickenson, had found by a rain-gauge that "except in December, January, and February, rain-water rarely descends more than three feet below the soil," etc. This statement apparently convinces Mr, Green that rain-waters never get deeper into the earth than three feet. But there are soils and soils.[1] And Professor Buckland did not neglect to point out their differences. He said, "The rain that falls on the uncovered chalk within the area of these basins (like that of London) descends, by countless crevices, into the lower regions of the chalk strata," etc. And even Mr. Dickenson's observations during many years had shown him that, in spite of the fact that in the drier part of the year the rain-waters rarely sank into his soil more than three feet, yet the quantity of summer water in the river Colne varied with the rain in the preceding winter. He probably knew, therefore, that these winter rains must be largely absorbed by the sponge-like chalk formations in the neighborhood, and slowly work their way downward many feet, to issue gradually at lower points in the form of springs to feed the river in summer.
Mr. Green quotes further from Professor Buckland's address, showing the great value of artesian wells in Wurtemberg, and then goes on: "From which quotations it appears that the Professor is in a remarkable position. At Wetford" (sic) "these wells could not be utilized because the river-supply of the Coln" (sic) "would be exhausted; but in Germany they were a new and important source of supply to the rivers themselves." The Professor's position may be remarkable, but it is certainly reasonable. For it is a well-known fact that in some localities, that of Tours for one, as stated by Arago, artesian wells may be bored to any number hitherto tried without sensibly affecting the flow of those first sunk in the immediate neighborhood, while in other localities every new well either diminishes the flow of old wells or makes the level of the water in them sink. This last is the case near London. The "American Cyclopædia," article "Artesian Wells," says: "In the vicinity of London it is observed that the height to which the water rises diminishes as the number of wells is increased. In 1838 the supply of water from them was estimated at six million gallons daily, and in 1851 at nearly double the amount, and the average annual fall of the height of the water is about two feet." Professor Buckland had also stated that "Mr. Clutterbuck demonstrated, by a long-continued series of measurements of the water in the chalk-hills of Hertfordshire, near Watford, that every drop of water taken from that neighborhood would have been ab-
- ↑ Arago said—but he apparently lived too early—"Every one knows that in many places the upper ground is of sand, and that sand lets water through it like a sieve.