which is so dependent upon another for its existence, as it were, will, in some way or other, mold itself to suit the form and convenience of the other. It thus becomes a question of primary importance as to how energy is connected with and dependent upon matter, and as to how its form and availability are influenced by its connections.
That the same amounts of different kinds of energy, or even of different forms of the same kind, are vastly different in their effects, is a thing of every-day experience. A mass raised above the earth's surface possesses in consequence a certain amount of energy, in virtue of which it can do work; but if it be allowed to fall to the ground under the influence of the earth's attraction, then, although the amount of energy on the earth is neither increased nor diminished, it may be absolutely impossible to gain any work from it. In this instance energy of position is at first transformed into energy of motion, but the moment the mass strikes the ground all motion, as far as we are able to discover, is gone; but we know that the motion of the mass as a whole has only been transformed into motion of the particles among each other, and of the particles of the body on which the mass impinges, constituting the phenomenon of matter commonly called heat. The first two states are available as sources of mechanical energy, but in the third state the energy is scattered into an infinite number of infinitely small energies, as it were, and, in the case of small masses at least, is lost forever as far as doing work is concerned; and so much energy is let down from a high to a low class, and the whole energy of the universe is rendered less available by a corresponding amount.
But not only do equal quantities of energies of different kinds manifest themselves so very differently, but the same is true as to equal amounts of the same kind. A boxer may receive a blow from his antagonist which may stagger him, and perhaps throw him off his balance, but yet do him no permanent injury; while a rifle-ball with half the energy, though it might not disturb his equilibrium, would in all probability inflict instant death. Any number of examples of this kind might be given to show to what an extent the form which a given amount of energy assumes and the constancy of its effects are dependent upon the matter with which it is associated.
Now, the transformability of energy is a measure of its availability, and, in fact, energy is of use to us only and solely because it may be and is constantly transformed (consequently, whatever terms determine its transformability, the same hold good for the determination of its availability).
Since all forms of energy are essentially kinetic or potential, or the energy of heat-motion, it is sufficient if we examine the laws with regard to these.
A body is said to possess potential energy when in virtue of its position it can do work. A raised weight possesses potential energy, which, by a simple contrivance, may be converted into work; a bent