ance to the passage of the electric current, and for that reason can not be used at all. The lampblack taken from the chimney is laid upon a white slab, where the brown portions are readily detected and removed. The pure black portion is then ground and subjected to a pressure of several thousand pounds in a mold. It is then repowdered and repressed several times, and finally molded into buttons weighing three hundred milligrammes each.
The special advantages of the carbon button over buttons of other materials are notably its sensitiveness to very slight changes of pressure, its remarkable elasticity and its delicacy over a long range of absolute pressures. These properties it possesses in a higher degree than any other substance, and the explanation of this peculiarity has been found in certain of its physical characteristics. Microscopic examination has shown that, of all finely divided substances, whether obtained by chemical or mechanical means, lampblack is the most finely divided. Now, it is known that the change in resistance of any piece of finely divided material, caused by change of pressure, is due to the increase or diminution of the number of particles brought into contact with each other. On this account a given change of pressure will show a greater change of resistance in carbon than in any other substance. Moreover, with other materials, a point is soon reached when additional pressure ceases to produce any appreciable change in resistance, doubtless because all the particles are already in contact. But the fact that lampblack is so finely divided enables it to respond to changes of pressure long after other materials have lost their sensitiveness. For this reason a comparatively large initial pressure can be used with the carbon, and the instrument is not so easily thrown out of adjustment. That the greater delicacy of the lampblack is due to the fact that it is so finely divided has been confirmed by experiments made with gas-retort carbon, the particles of which are comparatively coarse, graphite, which is more finely divided, and lampblack, whose particles are the finest of all. The changes of resistance for a given change of pressure were found to be proportional to the number of particles in a given volume, or inversely proportional to the size of the particles. By microscopic comparison between a Rutherford diffraction grating having 17,291 lines ruled to the inch on a piece of speculum metal, Mr. Edison estimated that there could not be less than 10,000,000 points in contact in the carbon-button when used in the telephone. This must, however, be regarded only as an approximation.
The only defect in the carbon button is its friability. But, when properly armatured, it need receive no violent shock, and will last as long as necessary. Even if it should happen to become cracked, the volume of sound would not be materially lessened. Experiments have been made to harden the button by mixing various substances with the carbon, and then subjecting the mixtures to high temperatures.