Jump to content

Page:Popular Science Monthly Volume 17.djvu/437

From Wikisource
This page has been validated.
POPULAR MISCELLANY.
423

several hundredths of an inch farther than the labial palpi, and is itself provided with a rod and slit which may be made a tube, and a funnel for gathering nectar. This instrument appears to be the only one which is available for use in gathering honey from small tubular flowers; and the examination of its construction explains why bees are so much longer in gathering from some flowers than from others, as those in which the combined tube is available. It is also probable that bees lap honey. The measurements of the tongues of bees show a uniformity in the length of those of bees from the same colony or apiary, but considerable difference in those of different breeds. In the same colony, tongue after tongue would show a variation of less than 0·25 of an inch from the base of the mentum to the tip of the ligula. The average length of the American black bee's tongue is about ·24 of an inch; that of the Italian bee is about ·02 of an inch longer. The longest tongues were found in some Cyprian bees. The difference in the length of the tongue is accompanied by a corresponding difference in the capacity of the bees for gathering honey. Honey in a vessel covered with fine gauze was placed before some Italian bees till they ceased to eat because they could no longer reach it. It was then placed before the black bees, but they could not reach it. A similar dish was given to the black bees first, and, after they ceased eating, the Italians continued to sip. Many trials gave similar results. This shows how the Italians can gather honey from flowers which fail to attract the black bees because the nectar is beyond their reach. It thus seems probable that the law of natural selection, which raised the Italian bees to their position of superiority, also gave them their longer tongues. Shut up in a narrow basin among the mountains, with only a limited range for food, competition must have been excessive among them, and the variations which gave any of them advantages over the others would come into the fullest play. Similar conditions may have determined the character of the Cyprian bees and other superior varieties of Europe.

The Violin: its Construction and Perfection.—In a lecture, which he recently delivered at the Royal Institution in London, on the construction, the history, and the sound of the violin, Mr. Haweis called attention to the variety in shape and style of instruments of the viol tribe, ancient and modern, as showing the inexhaustible fascination they possessed over the human mind. The wood was selected by the best makers of the old violins with extreme care. At Brescia, they used pear, lemon, and ash; at Cremona, maple, sycamore, "and, of course, pine. . . . The wood came into the markets of Mantua, Brescia, Cremona, Venice, Milan, from the Swiss southern Tyrol, unlimited in supply, often mighty timbers of great age—plentiful then, scarcer now. The makers had their pick; they tested it for intensity and quality. Cut strips of wood and strike them: you will see how they will vary in musical sound. When a good acoustic beam was found, the maker kept it for his best work. In Joseph Guarnerius and Stradivarius the same pine tree crops up at intervals of years. A good maker will patch and join and inlay, to retain every particle of tried timber. Old wood is oddly vocal. As I sat in my room, surrounded by these instruments, I could not cough or move without ghostly voices answering me from the sixteenth, seventeenth, and eighteenth centuries; and even the old-seasoned backs and bellies of unstrung violins are full of echoes." Taking a violin and tearing it open, the lecturer continued: "The violin is made of fifty-eight or seventy pieces. It is a miracle of construction. It is as light as a feather and as strong as a horse. Wood about as thick as a half-crown, by exquisite adjustment, resists for centuries a pressure of several hundred-weight. The belly of soft deal, the back of hard sycamore, are united by six ribs of sycamore, supported by twelve blocks with linings. The sound-bar, running obliquely under the left foot of the bridge, is the nervous system of the violin; the sound-post, supporting the bridge, is the soul; through it pass all the heartthrobs or vibrations generated between the back and the belly; on its position depends mellowness, tightness, or intensity of sound. The prodigious strain of the strings is resisted first by the arch of the belly, then by the ribs, strengthened with the upright blocks, the pressure among which is evenly distributed by the linings which unite them,