Jump to content

Page:Popular Science Monthly Volume 17.djvu/505

From Wikisource
This page has been validated.
RECENT ORIGINAL WORK AT HARVARD.
489

head of original investigation, the observations constantly taken in connection with the Observatory Time Service resolve themselves into mere routine work. An immediate and practical benefit is conferred by this Time Service, the signals of which reach Bangor, Lennoxville, in Canada, Albany, and New York, as well as different points in Massachusetts. The copper time-ball, held by a powerful electro-magnet at the top of the mast on the Equitable Life Assurance Building, Boston, is released at noon by the clock at Cambridge. During 1879 accidents caused a small error in its fall on two days only, and on three days it has been dropped at 12h. 5m. 0s.

The great equatorial of fifteen inches' aperture and the meridian circle whose telescope has an aperture of eight inches have been kept actively in use for the last three years. The former instrument has been devoted almost entirely to photometric work. The problem of astronomical photometry, roughly stated, is to determine the brightness of all the heavenly bodies, so that all may be compared with a single standard. Previous to the beginning of this work at the Harvard Observatory, photometric measurements had been made almost entirely upon the planets and brighter stars, and there was no definite knowledge of the amount of light emitted by the satellites and fainter stars. At the outset of the work several hundred measurements were taken of the brightness of the outer and inner satellites of Mars, which measures have been taken accurately nowhere else. The satellites of Jupiter and Saturn, including Hyperion, the faintest of Saturn's satellites, were similarly measured. In addition to measuring their brightness, a large number of determinations of the positions of the satellites were made. A comparison was also begun of the light of the sun and stars, with the idea of reducing all photometric measurements to a common standard—the light of the sun. This photometric work has been continued until the light of all the known satellites, except the two inner satellites of Uranus, has been measured.

One of the most important series of equatorial observations has been in connection with the eclipses of Jupiter's satellites. These phenomena have proved exceedingly valuable as a means not only of determining the orbits of the satellites themselves, but of measuring the distance of the sun or the velocity of light, and of obtaining terrestrial longitudes.

The observations of the mere appearance or disappearance of a satellite, however, can not be rendered sufficiently exact, and, to lessen the errors, photometric observations have been made of the satellites as they gradually enter or emerge from the shadow of Jupiter, using the planet itself or another satellite as a standard.

In order to furnish means for the comparison of the scales of stellar magnitude, employed by different astronomers in their estimate of the brightness of faint stars, a number of faint stars in the immediate neighborhood of the north pole were selected for photometric mea-