Jump to content

Page:Popular Science Monthly Volume 19.djvu/260

From Wikisource
This page has been validated.
248
THE POPULAR SCIENCE MONTHLY.

to the quantity of electricity contained in the attracting as on the attracted body, and therefore even the feeble electric tension of two Daniell's elements, acting through an electrolytic cell upon the enormous quantities of electricity with which the constituent ions of water are charged, is mighty enough to separate these elements and to keep them separated.

We now turn to investigate what motions of the ponderable molecules require the action of these forces. Let us begin with the, case where the conducting liquid is surrounded everywhere by insulating bodies. Then no electricity can enter, none can go out through its surface, but positive electricity can be driven to one side, negative to the other, by the attracting and repelling forces of external electrified bodies. This process, going on as well in every metallic conductor, is called "electrostatic induction." Liquid conductors behave quite like metals under these conditions. Professor Wüllner has proved that even our best insulators, exposed to electric forces for a long time, are charged at last quite in the same way as metals would be charged in an instant. There can be no doubt that even electro-motive forces going down to less than 1/100 Daniell produce perfect electrical equilibrium in the interior of an electrolytic liquid.

Another somewhat modified instance of the same effects is afforded by a voltametric cell containing two electrodes of platinum, which are connected with a Daniell's cell, the electro-motive force of which is insufficient to decompose the electrolyte. Under this condition the ions carried to the electrodes can not give off their electric charges. The whole apparatus behaves, as was first accentuated by Sir W. Thomson, like a condenser of enormous capacity.

Observing the polarizing and depolarizing currents in a cell containing two electrodes of platinum, hermetically sealed and freed of all air, we can observe these phenomena with the most feeble electro-motive forces of 1/1000 Daniell, and I found that down to this limit the capacity of the platinum surfaces proved to be constant. By taking greater surfaces of platinum I suppose it will be possible to reach a limit much lower than that. If any chemical force existed besides that of the electrical charges, which could bind all the pairs of opposite ions together, and require any amount of work to be vanquished, an inferior limit to the electro-motive forces ought to exist, which forces are able to attract the atoms to the electrodes and to charge these as condensers. No phenomenon indicating such a limit has as yet been discovered, and we must conclude, therefore, that no other force resists the motions of the ions through the interior of the liquid than the mutual attractions of their electric charges.

On the contrary, as soon as an ion is to be separated from its electrical charge we find that the electrical forces of the battery meet with a powerful resistance, the overpowering of which requires a good deal of work to be done. Usually the ions, losing their electric charges,