Page:Popular Science Monthly Volume 19.djvu/835

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
PROGRESS IN THE MANUFACTURE OF STEEL.
815

result of the application has been, that phosphorus has been converted from an enemy into a friend, and aids in producing and maintaining the temperature that is needed. Silicon is also useful as a combustible, and in preventing the metal from becoming honeycombed by escaping gases while solidifying. This it does by combining with oxygen and preventing the latter substance from combining with carbon and forming a gaseous product.

In consequence of the extremely high temperature which we can command, either in the Bessemer or open-hearth process, it is possible to obtain in a molten state a metal practically free from carbon, or containing carbon to any required amount. All of the products have been called steel, although they constitute in effect a new metal, having qualities considerably different from those of steel.

It thus has resulted that we speak of steel ships, steel boilers, and steel rails. The metal of which ship-plates are made contains about 13100 per cent. of carbon, that for boilers about 24100 while rails usually have about 410. The first and the second could not be appreciably hardened, and the third is considerably below what would formerly have been considered steel.

At present there is but one sound reason why steel should not universally replace iron with advantage, and that is, that in some cases it is cheaper to employ iron. Statistics show us that the enormous quantities of steel now manufactured have but little, if at all, affected the production of wrought-iron. It is, however, I am convinced, but a question of time. When the day comes—and every day brings us nearer to it—when steel will be manufactured as cheaply as iron, then will wrought-iron be a thing of the past among the great civilized nations.

One word as regards the employment of steel made by these modern methods for cutlery. Cutlery-manufacturers would tell you that it is useless for the purpose; nevertheless, on the Continent, it is very largely used, and in this country to a considerable extent. I do not hesitate to assert that, with suitable ores and proper care in the manufacture, steel well suited for cutlery can be made both in the open hearth and the converter. The essential in the ore is that it should not contain phosphorus; with but a trace of phosphorus present, a good cutting edge could never be obtained.

If we glance back for a moment to review our history, we shall see that the open-hearth processes embody the same principle as the first process by which steel was produced, viz., the mutual action of carburized iron and oxide of iron on one another, and the Bessemer process is, after all, though a splendid offspring, only the natural descendant of the finery process, the origin of which, as we have seen, was due to modifications in the primitive blast-furnaces. There is perfect continuity throughout, and, after all, what more natural?