Jump to content

Page:Popular Science Monthly Volume 2.djvu/110

From Wikisource
This page has been validated.
98
THE POPULAR SCIENCE MONTHLY.

hitherto known have been expressed qualitatively, with a little allowance for error on either side. Things which are let go fall to the ground. A very observant man may know also that they fall faster as they go along. But our student is shown that, after falling for one second in a vacuum, a body is going at the rate of thirty-two feet per second; that after falling for two seconds it is going twice as fast; after going two and a half seconds, two and a half times as fast. If he makes the experiment, and finds a single inch per second too much or too little in the rate, one of two things must have happened: either the law of falling bodies has been wrongly stated, or the experiment is not accurate—there is some mistake. He finds reason to think that the latter is always the case: the more carefully he goes to work, the more of the error turns out to belong to the experiment. Again, he may know that water consists of two gases, oxygen and hydrogen, combined; but he now learns that two pints of steam at a temperature of 150° centigrade will always make two pints of hydrogen and one pint of oxygen at the same temperature, all of them being pressed as much as the atmosphere is pressed. If he makes the experiment and gets rather more or less than a pint of oxygen, is the law disproved? No; the steam was impure, or there was some mistake. Myriads of analyses attest the law of combining volumes; the more carefully they are made, the more nearly they coincide with it. The aspects of the faces of a crystal are connected together by a geometrical law, by which, four of them being given, the rest can be found. The place of a planet at a given time is calculated by the law of gravitation; if it is half a second wrong, the fault is in the instrument, the observer, the clock, or the law; now, the more observations are made, the more of this fault is brought home to the instrument, the observer, and the clock. It is no wonder, then, that our student, contemplating these and many like instances, should be led to say: "I have been short-sighted; but I have now put on the spectacles of science which Nature had prepared for my eyes; I see that things have definite outlines, that the world is ruled by exact and rigid mathematical laws; καὶ σύ, θεός, γεωμετρεῖς." It is our business to consider whether he is right in so concluding. Is the uniformity of Nature absolutely exact, or only more exact than our experiments?

At this point we have to make a very important distinction. There are two ways in which a law may be inaccurate. The first way is exemplified by that law of Galileo which I mentioned just now: that a body falling in vacuo acquires equal increase in velocity in equal times. No matter how many feet per second it is going, after an interval of a second it will be going thirty-two more feet per second. We now know that this rate of increase is not exactly the same at different heights, that it depends upon the distance of the body from the centre of the earth; so that the law is only approximate; instead of the increase of velocity being exactly equal in equal times, it itself