matical physics, which requires of most men a good deal of careful study to understand it accurately.
Let us pass on to consider, with all the reverence which it demands, another opinion, held by great numbers of the philosophers who have lived in the brightening ages of Europe: the opinion that, at the basis of the natural order, there is something which we can know to be unreasonable, to evade the processes of human thought. The opinion is set forth first by Kant, so far as I know, in the form of his famous doctrine of the antinomies or contradictions, a later form[1] of which I will endeavor to explain to you. It is said, then, that space must either be infinite or have a boundary. Now, you cannot conceive infinite space; and you cannot conceive that there should be any end to it. Here, then, are two things, one of which must be true, while each of them is inconceivable; so that our thoughts about space are hedged in, as it were, by a contradiction. Again, it is said that matter must either be infinitely divisible, or must consist of small particles incapable of further division. Now, you cannot conceive a piece of matter, divided into an infinite number of parts, while, on the other hand, you cannot conceive a piece of matter, however small, which absolutely cannot be divided into two pieces; for, however great the forces are which join the parts of it together, you can imagine stronger forces able to tear it in pieces. Here, again, there are two statements, one of which must be true, while each of them is separately inconceivable; so that our thoughts about matter also are hedged in by a contradiction. There are several other cases of the same thing, but I have selected these two as instructive examples. And the conclusion to which philosophers were led by the contemplation of them was, that on every side, when we approach the limits of existence, a contradiction must stare us in the face. The doctrine has been developed and extended by the great successors of Kant; and this unreasonable, or unknowable, which is also called the absolute and the unconditioned, has been set forth in various ways as that which we know to be the true basis of all things. As I said before, I approach this doctrine with all the reverence which should be felt for that which has guided the thoughts of so many of the wisest of mankind. Nevertheless, I shall endeavor to show that, in these cases of supposed contradiction, there is always something which we do not know now, but of which we cannot be sure that we shall be ignorant next year. The doctrine is an attempt to found a positive statement upon this ignorance, which can hardly be regarded as justifiable. Spinoza said, "A free man thinks of nothing so little as of death;" it seems to me we may parallel this maxim in the case of thought, and say, "A wise man only remembers his ignorance in order to destroy it." A boundary is that
- ↑ That of Mr. Herbert Spencer, "First Principles." I believe Kant himself would have admitted that the antinomies do not exist for the empiricist.