Jump to content

Page:Popular Science Monthly Volume 2.djvu/238

From Wikisource
This page has been validated.
226
THE POPULAR SCIENCE MONTHLY.

can be equally sure that his friend is sauntering up-stream, if the corks come past with a common interval exceeding three feet; and that he is sauntering down-stream, if the common interval is less than three feet. And, if, by some process of measuring, he can find out exactly how much greater or how much less than three feet the interval is, he can tell exactly how fast his friend is sauntering up-stream or down-stream. It would not matter how far down-stream the observer might be, so long as the stream's rate of flow remained unchanged; nor, indeed, would it matter, even though the stream flowed at a different rate past the observer than past the cork-thrower, so long as neither of these two rates was liable to alteration.

Now, we may compare the emission of light-waves by a luminous object to the throwing of corks in our illustrative case. The rate of flow for light-waves is indeed infinitely faster than that of any river, being no less than 185,000 miles per second. The successive light-waves are set in motion at infinitely shorter time-intervals, since for extreme red light there are no less than 458,000,000,000,000 undulations per second, and for extreme violet no less than 727,000,000,000,000; but these specific differences do not affect the exactness of the illustration. It is obvious that all that is necessary to make the parallel complete is that the flow of light-waves shall reach the observer at a constant rate (which is the actual case), and that he shall know, in the case of any particular and distinguishable kind of light, what is the rate at which the wave-action is successively excited, and be able to compare with this known rate the rate at which they successively reach him. If they come in quicker succession than from a luminous body at rest, he will know that the source of light is approaching, as certainly as our observer down-stream would know that his friend was sauntering toward him if the corks came two feet apart instead of three feet. If, on the contrary, the light-waves of a particular kind come in slower succession than from a body at rest, the observer will know that the source of light is receding, precisely as the river-side observer would know that his friend was travelling away from him if the corks came past him four feet apart instead of three.

Now, the stellar spectroscopist can distinguish, among the light-waves of varied length which reach him, those which have a particular normal length. He analyzes star-light with his spectroscope, and gets from it a rainbow-tinted streak crossed by dark lines. These dark lines belong to definite parts of the spectrum; that is, to such and such parts of its red, or orange, or yellow, or green, or blue, or indigo, or violet portion. Thus they correspond to light having a particular wave-length. And many of these lines in stellar spectra are identifiable with the lines due to known elements. For instance, in the spectrum of Sirius there are four strong dark lines corresponding to the known bright lines of the spectrum of hydrogen. Thus the wave-length corresponding to any one of these dark lines is perfectly well