A HALF-CENTURY OF SCIENCE.[1] |
By Sir JOHN LUBBOCK.
II.
IN astronomy, the discovery in 1845 of the planet Neptune, made independently and almost simultaneously by Adams and by Le Verrier, was certainly one of the very greatest triumphs of mathematical genius. Of the minor planets, four only were known in 1831, while the number now on the roll amounts to 220. Many astronomers believe in the existence of an intra-Mercurial planet or planets, but this is still an open question. The solar system has also been enriched by the discovery of an inner ring to Saturn, of satellites to Mars, and of additional satellites to Saturn, Uranus, and Neptune.
The most unexpected progress, however, in our astronomical knowledge, during the past half-century, has been due to spectrum analysis. The dark lines in the spectrum were first seen by Wollaston, who noticed a few of them; but they were independently discovered by Fraunhofer, after whom they are justly named, and who, in 1814, mapped no fewer than 576. The first steps in "spectrum analysis," properly so called, were made by Sir J. Herschel, Fox Talbot, and by Wheatstone, in a paper read before this Association in 1835. The latter showed that the spectrum emitted by the incandescent vapor of metals was formed of bright lines, and that these lines, while, as he then supposed, constant for each metal, differed for different metals. "We have here," he said, "a mode of discriminating metallic bodies more readily than that of chemical examination, and which may hereafter be employed for useful purposes." Nay, not only can bodies thus be more readily discriminated, but, as we now know, the presence of extremely minute portions can be detected, the 15000000 of a grain being in some cases easily perceptible.
It is also easy to see that the presence of any new simple substance might be detected, and in this manner already several new elements have been discovered, as I shall mention when we come to chemistry.
But spectrum analysis has led to even grander and more unexpected triumphs. Fraunhofer himself noticed the coincidence between the double dark line D of the solar spectrum and a double line which he observed in the spectra of ordinary flames, while Stoke* pointed out to Sir W. Thomson, who taught it in his lectures, that in both cases these lines were due to the presence of sodium. To Kirchhoff and Bunsen, however, is due the independent conception and the credit of having first systematically investigated the relation which exists between
- ↑ Presidential address before the York Meeting of the British Association for the Advancement of Science.