ing that steam-power is substituted for the manual labor you just saw for producing the electric currents.
We next come to the work performed by electricity in passing through solids. The result of that work is simply the production of heat. Before me you will notice two brass stands, and between them I will suspend a piece of fine platinum wire. I now join up one of my battery wires to one of the brass stands, and touch the other brass stand with the other battery wire; the effect appears as a red glow in the platinum wire. If I bring one of my battery wires from the bottom of the brass stand to the end of the platinum wire, the color of the glow becomes brighter; and, as I move my battery wire along the platinum wire, the glow or light produced by the high temperature in the platinum becomes more and more intense, until finally, when it reaches a certain temperature (about 3,000° Fahr.), the wire is ruptured, and falls to the ground. That is evidence that the passage of electricity, through solid conductors, produces heat, and the amount of heat produced is proportioned to the work done in the battery. Energy expended in one part of a circuit must be given out at another. If zinc is consumed in a battery, it generates a certain amount of energy; that energy must be evident in some other part of the circuit, and the heat you saw in the platinum was really the heat that would have appeared in the battery itself if we had not caused the current to flow through a solid conductor which offered a considerable amount of resistance to its progress, as compared with the resistance in the battery itself. This power of producing heat has been utilized in various ways, such as for firing fuses. [An Abel fuse was exploded.] At many places throughout the country, time-guns are fired by such an electric fuse to announce the Greenwich time current at a certain hour. Mines and torpedoes are exploded in a similar manner; quarries are blasted, and many other results are brought about by passing electricity through platinum wire placed in explosive substances, or by special fuses. I do not intend to frighten or alarm you, but for your amusement, and through the kindness of Professor Abel, I have had fuses fixed out of harm's way at various points round the room, and, when a small current is passed through them, you will hear the explosion produced. Those fuses might have been fixed miles away, and the same effect would have been produced, and from it you will understand how a number of charges can be fired, or a number of guns can be discharged simultaneously on board our large men-of-war.
The next branch of the subject is the work done by electricity in its passage through air and gases. I have shown you that, in its passage through liquids, it tears the constituents of the solution asunder; in its passage through solids heat is produced; and in its passage through air, it not only produces heat, but violent projection of material particles as well, which it renders incandescent, producing sparks, heat, and other disruptive effects. To illustrate this, I have provided