it would flash into gas of a vastly inferior, but still of an elevated, temperature. It is supposed that such fluid material, or material in the "critical" condition, as Professor Thomas Andrews, of Belfast, has named it, is continually transferred to the surface by means of convection-currents, that is to say, by currents forming naturally when a fluid substance is cooled at its upper surface, and sinks down after cooling to make room for ascending material at the comparatively higher temperature. It is owing to such convection-currents that the temperature of a room is, generally speaking, higher toward the ceiling than toward the floor, and that upon plunging a thermometer into a tank of heated water the surface temperature is found slightly superior to that near the bottom.
These convection-currents owe their existence to a preponderance of the cooled descending over the ascending current; but this difference being slight, and the ascending and descending currents inter-mixing freely, they are, generally speaking, of a sluggish character; hence, in all heating apparatus, it is found essential to resort either to artificial propulsion, or to separating walls between the ascending and the descending currents, in order to give effect to the convective transfer of heat.
In the case of a fluid sun another difficulty presents itself through the circumstance that the vast liquid interior is enveloped in a gaseous atmosphere, which, although perhaps some thousands of miles in depth, represents a relatively very small store of heat. Convection-currents may be supposed active in both the gaseous atmosphere and in the fluid ocean below, but the surface of this fluid must necessarily constitute a barrier between the two convective systems, nor could the convective action of the gaseous atmosphere—that is to say, the simple up and down currents caused by surface refrigeration—be such as to disturb the liquid surface below to any great extent, because each descending current would have had plenty of time to get intermixed with its neighboring ascending current, and would, therefore, have reached its least intensity on arriving on the liquid surface.
As regards the liquid, its most favorable condition for heating purposes would be at the critical point, or that at which the slightest diminution of superincumbent pressure would make it flash off into gas; but considering that, by means of conduction and convection, the liquid matter must have assumed, in the course of ages, a practically uniform temperature to a very considerable depth, it follows that the liquid below the surface, with fluid pressure in addition to that of the superimposed gaseous atmosphere, must be ordinary fluid, the critical condition being essentially confined only to the surface.
Conditions analogous to those here contemplated are met with in a high-pressure steam-boiler, with its heated water and dense vapor atmosphere. Suppose the fire below such a boiler be withdrawn, and its roof be exposed to active radiation into space, what should we ob-