the profundity of the plan of the universe. Then we enter on another domain which the human spirit will be always impelled to enter and explore. It is thus, and you can not change it. It is in vain that Science has revealed to it the structure of the world and the order of all the phenomena; it wishes to mount higher, and in the conviction that things have not in themselves their own reason for existing, their support, and their origin, it is led to subject them to a first cause unique, universal God."
In 1878 Professor Wurtz delivered the Faraday Lecture of the English Chemical Society, taking for his subject "The Constitution of Matter in the Gaseous State." In this lecture he gave a clear exposition of the kinetic theory of gases, which postulates them as "composed of small particles moving freely in space with immense velocities, and capable of communicating their motion by collision or friction," and suggested that it had "shed a sudden clearness, an unexpected light, on matters which seemed to be veiled in the deepest obscurity," and added that the labors by which this theory had been worked out "mark a resting-place in our course, and are, perhaps, an approach toward the eternal problem of the constitution of matter—a problem which dates from the earliest ages of civilization, and, though discussed by all the great thinkers of ancient as well as of modern times, still remains unsolved. May we not hope that in our own time this problem has been more clearly stated and more earnestly attacked, and that the labors of the nineteenth century have advanced the human mind in these arduous paths more than those of a Lucretius, and even of a Descartes and a Newton? From this point of view the discoveries of modern chemistry, so well expressed and summarized by the immortal conception of Dalton, will mark an epoch in the progress of the human mind."
In the same year Professor Wurtz, having been charged by the French Minister of Public Instruction to make inquiry into the organization of the laboratories and the practical instruction given in the several universities of Germany and Austro-Hungary, made a number of journeys to the great seats of learning in those countries. In his report he insisted strongly on the danger of creating large establishments, where students are taught something of everything, and on the necessity of creating special foci for every large section of experimental science. He showed the advantage of special institutes, and insisted upon the organization of chemical, physical, physiological, anatomical, and pathological institutions, such as flourish on the other side of the Rhine.
A second report on this series of observations has been published within the present year. It contains descriptions of the great scientific establishments of Berlin, Buda-Pest, Gratz, Leipsic, and Munich, and is confined to a simple account of what the author observed in the institutions described; for, he says, "an unmeasured and uncritical