Jump to content

Page:Popular Science Monthly Volume 22.djvu/821

From Wikisource
This page has been proofread, but needs to be validated.
SPECULATIONS ON THE NATURE OF MATTER.
801

enormous amount of energy liberated by their combination under any supposable attraction—certainly not under any that is observable.

We are, therefore, compelled to recognize the latent energy in matter. The kinematists were profoundly impressed by this now established fact, and, as is the usual tendency of the promulgation of any brilliant discovery, they undertook too much with it—to wit, to construct a kosmos.

By a similar tendency, after the establishment of the laws of motion, and of universal gravitation, followed by the discovery of the conservation of matter, and later by that of the conservation of energy, and the perception of the energy of position, these brilliant advances in knowledge of the absolute had encouraged the hope that the ultimate could be explained. Matter was then viewed almost entirely in its statical aspect—as is even now too much the case, for we still see in our chemical text-books molecules absurdly represented by geometrical diagrams—and, from the fact that motion does actually result from attraction and position, it was natural to relegate motion to the category of effects. There were, then, but two factors in the problem—matter, and its occult affections. But as matter they took the old "dead matter," in the last gasp of its evolution, freighted down with its bundle of inert properties of negation, and, to evolve a universe, simply credited it with its virtue of position, and left it to the action of the weakest of its affections, gravitation, to run over again a short portion of its normal course.

Even then, the surprising result appeared that it would galvanize itself into life with activity enough to supply the radiant energy which our sun now exhibits for a period of some 20,000,000 years. This, whether we follow the meteoric hypothesis of Mayer, or the contraction hypothesis of Helmholtz, which have been held to be the only conceivable hypotheses. How sublime the solution of the problem could we, in the place of these cinders, put into the mathematical mill the true data! James Croll, in groping for some adequate data to explain the duration actually needed for the exhibition of solar energy of which we have evidence, suggests ("Climate and Time," page 353) that, on dynamical principles, given two masses each one half the sun's mass, moving directly toward each other with a velocity of 476 miles per second, sufficient heat might be accounted for to cover an emission at the present rate for 50,000,000 years. The surplus velocity, over and above that due to gravity, he derives from stellar proper motion; but, while the supposition is violent and unphilosophical, both in respect to the large proper motion assumed, and particularly as to the assumption of direct collision, in the plurality of cases called for by the multitude of suns, the result is still grossly inadequate. The problem is insoluble from pure dynamical considerations. They take no heed of the most important factors—elementary specific heat, elementary affinities, elementary motion. When we once succeed in