liquid spherules floating in the beam. A beautiful circular rainbow was instantly swept through the air in front of the observer. The primary bow was duly attended by its secondary, with the colors, as usual, reversed. The opening of the valve for a single second causes the bows to flash forth. Thus, twenty times in succession, puffs can be allowed to issue from the boiler, every puff being followed by this beautiful meteor. The bows produced by single puffs are evanescent, because the little globules rapidly disappear. Greater permanence is secured when the valve is left open for an interval sufficient to discharge a copious amount of drizzle into the air.[1]
Many other appliances for producing a fine rain have been tried, but a reference to two of them will suffice. The rose of a watering-pot naturally suggests a means of producing a shower; and on the principle of the rose I had some spray-producers constructed. In each case the outer surface was convex, the thin convex metal plate being pierced by orifices too small to be seen by the naked eye. Small as they are, fillets of very sensible magnitude issue from the orifices, but at some distance below the spray-producer the fillets shake themselves asunder and form a fine rain. The small orifices are very liable to get clogged by the fine particles suspended in London water. In experiments with the rose, filtered water was, therefore, resorted to. A large vessel was mounted on the roof of the Royal Institution, from the bottom of which descended vertically a piece of compo-tubing, an inch in diameter and about twenty feet long. By means of proper screw fittings, a single rose, or, when it is desired to increase the magnitude or density of the shower, a group of two, three, or four roses, is attached to the end of the compo-tube. From these, on the turning on of a cock, the rain descends. The circular bows produced by such rain are far richer in color than those produced by the smaller globules of the condensed steam. To see the effect in all its beauty and completeness, it is necessary to stand well within the shower, not outside of it. A water-proof coat and cap are, therefore, needed, to which a pair of goloshes may be added with advantage. A person standing outside the beam may see bits of both primary and secondary in the places fixed by their respective angles; but the colors are washy and unimpressive, while within the shower, with the shadow of the head occupying its proper position on the screen, the brilliancy of the effect is extraordinary. The primary clothes itself in the richest
- ↑ It is perhaps worth noting here, that when the camera and lens are used the beam which sends its "effective rays" to the eye may not be more than a foot in width, while the circular bow engendered by these rays may be, to all appearance, fifteen or twenty feet in diameter. In such a beam, indeed, the drops which produce the bow must be very near the eye, for rays from the more distant drops would not reach the required angle. The apparent distance of the circular bow is often great, in comparison with that of the originating drops. Both distance and diameter may be made to undergo variations. In the rainbow we do not see a localized object, but receive a luminous impression, which is often transferred to a portion of the field of view far removed from the bow's origin.