molecules of the factors are written on one side and the symbols of the molecules of the products are written on the other side of an equation, the number of molecules of each substance involved being indicated by numerical coefficients.
The atomic symbols, as we have seen, stand for definite weights. In the same way, the molecular symbols stand for definite weights, which are the sums of the weights of the atoms of which each consists, and in every chemical equation the weights of the molecules represented on one side must necessarily equal the weights of the molecules represented on the other. The chemical process consists merely in the breaking up of certain molecules, and the rearrangement of the same constituent atoms to form new molecules. Again, as the molecular symbols represent definite weights, the equation also indicates that a definite proportion by weight is preserved between the several factors and products of the process represented.
Again, since every molecular symbol represents the same volume when the substance is in an aëriform condition, it follows that the relative gas volumes are proportional to the number of molecules of the aëriform substances involved in the reaction. Thus it is that these chemical equations or reactions are a constant declaration of the three great fundamental laws of chemistry.
In order to enforce the above principles, a great number of examples should now be given which should be so selected as to illustrate familiar and important chemical processes, including the all-important phenomena of combustion. In each case, the student, having made the experiment, should write the equation or reaction which represents the process, and should be made to solve a sufficient number of stochio-metrical problems, involving both weights and volumes, to give him a complete mastery of the subject. Such questions as these will test the completeness of his knowledge:
Why is the symbol of water H2O? What information does the symbol CO 3 give in regard to carbonic-dioxide gas? Write the reaction of hydrochloric acid on sodic carbonate, and state what information the equation gives in regard to the process which it represents.
Of course, such questions may be greatly multiplied, and I cite these three only to call attention to the features of the method of instruction I have been endeavoring to illustrate.
But, besides teaching the general principles of chemical science, it is important to give the student a more or less extended knowledge of chemical facts and processes—especially such as play an important part in daily life, or in the arts—and such knowledge can readily be given in this connection. Beyond this I do not deem it desirable to go in an elementary course of instruction. The way, however, is now opened to the most advanced fields of the science. A comparison of symbols and reactions leads at once to the doctrine of quantivalence, and to the results of modern structural chemistry, which this doctrine