development for which we might otherwise have had long to wait, so now the requirements of electric lighting are giving rise to a new development of the art of measurement upon a large scale, which can not fail to prove of scientific as well as practical importance. Mere change of scale may not at first appear a very important matter, but it is surprising how much modification it entails in the instruments, and in the processes of measurement. For instance, the resistance-coils on which the electrician relies in dealing with currents whose maximum is a fraction of an ampere, fail altogether when it becomes a question of hundreds, not to say thousands, of amperes.
The powerful currents which are now at command constitute almost a new weapon in the hands of the physicist. Effects, which in old days were rare and difficult of observation, may now be produced at will on the most conspicuous scale. Consider, for a moment, Faraday's great discovery of the "magnetization of light," which Tyndall likens to the Weisshorn among mountains, as high, beautiful, and alone. This judgment (in which I fully concur) relates to the scientific aspect of the discovery, for to the eye of sense nothing could have been more insignificant. It is even possible that it might have eluded altogether the penetration of Faraday, had he not been provided with a special quality of very heavy glass. At the present day these effects may be produced upon a scale that would have delighted their discoverer, a rotation of the plane of polarization through 180° being perfectly feasible. With the aid of modern appliances, Kundt and Röntgen, in Germany, and H. Becquerel, in France, have detected the rotation in gases and vapors, where, on account of its extreme smallness, it had previously escaped notice.
Again, the question of the magnetic saturation of iron has now an importance entirely beyond what it possessed at the time of Joule's early observations. Then it required special arrangements purposely contrived to bring it into prominence. Now in every dynamo-machine the iron of the field-magnets approaches a state of saturation, and the very elements of an explanation of the action require us to take the fact into account. It is, indeed, probable that a better knowledge of this subject might lead to improvements in the design of these machines.
Notwithstanding the important work of Rowland and Stoletow, the whole theory of the behavior of soft iron under varying magnetic conditions is still somewhat obscure. Much may be hoped from the induction-balance of Hughes, by which the marvelous powers of the telephone are applied to the discrimination of the properties of metals, as regards magnetism and electric conductivity.
The introduction of powerful alternate-current in machines by Siemens, Gordon, Ferranti, and others, is likely also to have a salutary effect in educating those so-called practical electricians whose ideas do not easily rise above ohms and volts. It has long been known that,