Jump to content

Page:Popular Science Monthly Volume 25.djvu/767

From Wikisource
This page has been proofread, but needs to be validated.
THE RECENT PROGRESS OF PHYSICAL SCIENCE.
749

in the case of fair-shaped bodies, we have to deal almost entirely with resistance dependent upon skin-friction, and at high speeds upon the generation of surface-waves by which energy is carried off. At speeds which are moderate in relation to the size of the ship, the resistance is practically dependent upon skin-friction only. Although Professor Stokes and other mathematicians had previously published calculations pointing to the same conclusion, there can be no doubt that the view generally entertained was very different. At the first meeting of the Association which I ever attended, as an intelligent listener, at Bath, in 1864, I well remember the surprise which greeted a statement by Rankine that he regarded skin-friction as the only legitimate resistance to the progress of a well-designed ship. Mr. Froude's experiments have set the question at rest in a manner satisfactory to those who had little confidence in theoretical prevision.

In speaking of an explanation as satisfactory in which skin-friction is accepted as the cause of resistance, I must guard myself against being supposed to mean that the nature of skin-friction is itself well understood. Although its magnitude varies with the smoothness of the surface, we have no reason to think that it would disappear at any degree of smoothness consistent with an ultimate molecular structure. That it is connected with fluid viscosity is evident enough, but the modus operandi is still obscure.

Some important work bearing upon the subject has recently been published by Professor O. Reynolds, who has investigated the flow of water in tubes as dependent upon the velocity of motion and upon the size of the bore. The laws of motion in capillary tubes, discovered experimentally by Poiseuille, are in complete harmony with theory. The resistance varies as the velocity, and depends in a direct manner upon the constant of viscosity. But when we come to the larger pipes and higher velocities with which engineers usually have to deal, the theory which presupposes a regularly stratified motion evidently ceases to be applicable, and the problem becomes essentially identical with that of skin-friction in relation to ship-propulsion. Professor Reynolds has traced with much success the passage from the one state of things to the other, and has proved the applicability under these complicated conditions of the general laws of dynamical similarity as adapted to viscous fluids by Professor Stokes. In spite of the difficulties which beset both the theoretical and experimental treatment, we may hope to attain before long to a better understanding of a subject which is certainly second to none in scientific as well as practical interest.

As also closely connected with the mechanics of viscous fluids, I must not forget to mention an important series of experiments upon the friction of oiled surfaces, recently executed by Mr. Tower for the Institution of Mechanical Engineers. The results go far toward upsetting some ideas hitherto widely admitted. When the lubrication is