to just below the critical point. The discovery of these properties suggested an explanation of the failure of previous attempts to liquefy air. Air at ordinary low temperatures is in the gaso-liquid condition, and its liquefaction is not possible except when a difference exists between the density of the vapor and that of the liquid greater than it is possible to produce under any conditions than can exist then. It was necessary to reduce the temperature to below the critical point; and it was by adopting this course that MM. Cailletet and Raoul Pictet achieved their success. The rapid escape of the compressed gas itself from a condition of great condensation at an extremely low temperature was employed as the agent for producing a greater degree of cold than it had been possible before to obtain. M. Cailletet used oxygen escaping at -29° C. from a pressure of three hundred atmospheres; M. Raoul Pictet, the same gas escaping at -140° from a pressure of three hundred and twenty atmospheres; and both obtained oxygen and nitrogen, and M. Pictet hydrogen in what they thought was a liquid, and possibly even in a solid form.
Still, it could not be asserted that hydrogen and the elements of the air had been completely liquefied. These gases had not yet been seen collected in the static condition at the bottom of a tube and separated from their vapors by the clearly defined concave surface, which is called a meniscus. The experiments had, however, proved that liquefaction is possible at a temperature of below -120° C. (-184° Fahr.). To make the process practicable, it was only necessary to find sufficiently powerful refrigerants; and these were looked for among gases that had proved more refractory than carbonic acid and protoxide of nitrogen. M. Cailletet selected ethylene, a hydrocarbon of the same composition as illuminating gas, which, when liquefied by the aid of carbonic acid and a pressure of thirty-six atmospheres, boils at -103° C. (-153° Fahr.). M. Wroblewski, of Cracow, who had witnessed some of M. Cailletet's experiments, and obtained his apparatus, and M. Olzewski, in association with him, also experimented with ethylene, and had the pleasure of recording their first complete success early in April, 1883. Causing liquid ethylene to boil in an air-pump vacuum at -103° C, they were able to produce a temperature of -1,50° C. (-238° Fahr.), the lowest that had ever been observed. Oxygen, having been previously compressed in a glass tube, became a permanent liquid, with a clearly defined meniscus. It presented itself, like the other liquefied gases, under the form of a transparent and colorless substance, resembling water, but a little less dense. Its critical point was marked at -113° C. (-171° Fahr.), below which the liquid could be formed, but never above it; while it boiled rapidly at -186° C. (-303° Fahr.). A few days afterward, the Polish professors obtained the liquefaction of nitrogen, a more refractory gas, under a pressure of thirty-six atmospheres, at -146° C. (-231° Fahr.). Long, difficult, and expensive operations were re-