scientific method in ideas, often exists where unsuspected, and only demanding proper cultivation.
As an illustration of the method described in the text, when carried into more complete studies, I insert an exercise written by the child when six and a quarter years old. It is a description of a wild Iris, which she analyzed herself on successive days, writing down the results from memory on the next day. She was never told anything, but obliged to discover for herself each fact, to compose the sentence describing it, and to spell by ear the words of the sentence without copy. She was allowed to insert in her description whatever fancies occurred to her. The headings and order of evolution of the subject were alone dictated. With nearly all the technical terms she was, however, already familiar; two only were told—"perianth," as opposed to corolla, and "blade." Before analyzing the Iris she was obliged to take a long walk to the woods for it, and first to draw a map showing the way, and by means of the compass. Two intersecting lines from sight-objects were dictated by me, and the fact learned by this and another previous experiment which had failed, that to locate an object in space at least two lines are required. The final description, whose writing occupied two or three weeks, was as follows:
The Rainbow Family.—(This name was given as a literal translation of Iridaceæ, and as a return in a spiral to the first natural object studied eighteen months before, the rainbow. The way was also prepared for the future historical study of the myth of Iris.)
Iris Tricolor.—(The numeral was already familiar.)
Perianth = 6 Petals. (The algebraic signs and numbers were used to indicate that in a scientific document, not a flowing style, but the fewest words and most concise expressions were required.)
These stand on top of a long tube in which the style is locked in. There are two kinds of petals: 1. Three which are the biggest, and have three colors. There are two parts to each the upper broad part called the blade, and the lower long narrow part. (The term "blade" was here taught for the first time.) The blade is first purple; in the middle is a gold stripe which runs into the narrow part. (At this point, the child drew and painted from memory, on the margin of her protocol, a picture of the petal.) Between the purple and gold the blade is white. These petals curve outward and downward, so that the gold stripe comes on top. The bees see it and come for the pollen. (First introduction of a Darwinian law.) 2. Three petals, which are entirely purple, are vertical, smaller, and stand between the others. (The child made another drawing by opening the flower on the page and tracing its outlines.) It is as if six girls were standing in a circle (here was introduced a botanical outline of the whorl, instinctively devised by the child, the circle being drawn accurately, with compasses). Every other one leans back and stretches her arms out horizontally, as if to show her gold bracelet. The three others lean forward, and hold their arms up above their heads. (Prolonged contemplation of this lovely group tended to evoke such instinctive æsthetic conceptions as are at the basis of many pieces of statuary, notably Thorwaldsen's Graces.) The gold stripe is like the orange feathers on the head of the bee-martin. The bees think it is a flower, and come and settle on the bird's head; then he catches them. (This illustration was suggested by the child, shortly after having seen such a bird which bad been shot. She thus learned to step from one section of natural history to another, and also to seek analogies of organs in their functions.) Mamma says (here knowledge by testimony is distinguished from that obtained