horns, and before long you will have a race of oxen in which length of horns will he hereditary, although the animal is sterile." The experiment has yet to be made, and is worthy of being a temptation to some one of the great English lords who know so well how to spend their fortunes for the advance of science. There is every reason to believe that it would succeed; and, if this striking instance ever comes, to justify Darwin's theories in their points most difficult of explanation, how can we avoid accepting them in their completeness, as well for external forms as for instinct?
Neuters in a community bring at their birth an intellectual disposition, a special tendency. The community benefits by it, and prospers; but the parents of these neuters have produced, besides, males and females, who will be able to inherit in their turn the property of giving life to neuters having the same disposition or the same tendency with the first. This becomes hereditary; it fixes itself in the race; it is thenceforward an instinct; and it will be able to continue developing itself thus by a sort of collateral inheritance. The source of it will continue in the parents without its being necessary that they should have it themselves, exactly as the reason for the long horns of the oxen is in the parent bull and heifer which have only short ones themselves.
Even after confuting this great objection of the neuters, the problem of explaining the architecture of bees by natural conditions seemed still to defy every attempt. Yet Darwin undertook to solve it. Aided by the experiments of his countryman Waterhouse, he shows that all this labor, worthy of the most practised geometrician, can be reduced, in the last analysis, to a certain number of very simple habits, taken in succession, so that by a linking together of facts, hypothetical, it is true, yet all perfectly plausible and possible, we arrive at the discovery, in the biological laws already known, of a natural explanation of that instinct which seems to share in the miraculous. We know the subject in question. The cells of the bee are six-sided prisms of perfect regularity. The most interesting point is the bottom of the cell; it is formed of a hollow pyramid of three equal sides, and arranged in such a manner that each contributes its share, on the other side of the comb, to make the bottom of a distinct cell; the bottom of each cell thus rests on three cells on the other side of the comb. Buffon did not remark this combination; he only spoke of the regular hexagonal design of the whole, and on this subject he had a singular idea. "The bees," he said, "all want to make a cylindrical chamber for themselves in the wax, but room is wanting; on the comb, which is too small, each one attempts to settle itself in the way most convenient for itself, at the same time that all are equally in each other's way. The cells are hexagonal only on account of reciprocal obstacles. For the same reason," he adds, "as, if we fill a vessel with peas or cylindrical grains, shut it tightly after pouring in as much water as the