rays, which together make up white light, concur in their action on the retina at a given moment; in ordinary cases it is immaterial whether these rays have left the luminous body successively or together. But it is otherwise when a luminous body becomes visible suddenly, as in the case of the satellites of Jupiter, or Saturn, after their eclipses. At certain periods, more than 49 minutes are requisite for the transmission of light from Jupiter to the earth. Now, at the moment when one of Jupiter's satellites, which has been eclipsed by that planet, emerges from the shadow, the red rays, if their velocity were the greatest, would evidently reach the eye first, the orange next, and so on through the chromatic scale, until finally the complement of colors would be filled by the arrival of the violet ray, whose velocity is supposed to be the least. The satellite, immediately after its emersion, would appear red, and gradually, in proportion to the arrival of the other rays, pass into white. Conversely, at the beginning of the eclipse, the violet rays would continue to arrive after the red and other intervening rays, and the satellite, up to the moment of its total disappearance, will gradually shade into violet.
Unfortunately for Cauchy's hypothesis, the most careful observation of the eclipses in question has failed to reveal any such variations of color, either before immersion, or after emersion, the transition between light and darkness taking place instantaneously, and without chromatic gradations.
If it be said that these chromatic gradations escape our vision by reason of the inappreciability of the differences under discussion, astronomy points to other phenomena no less subversive of the doctrine of unequal velocities in the movements of the chromatic undulations. Fixed stars beyond the parallactic limit, whose light must travel more than three years before it reaches us, are subject to great periodical variations of splendor; and yet these variations are unaccompanied by variations of color. Again, the assumption of different velocities for the different chromatic rays is discountenanced by the theory of aberration. Aberration is due to the fact that, in all cases where the orbit of the planet, on which the observer is stationed, forms an angle with the direction of the luminar ray, a composition takes place between the motion of the light and the motion of the planet, so that the direction in which the light meets the eye is a resultant of the two component directions—the direction of the ray and that of the observer's motion. If the several rays of color moved with different velocities there would evidently be several resultants, and each star would appear as a colored spectrum longitudinally parallel to the direction of the earth's motion.
The alleged dependence of the velocity of the undulatory movements, which correspond to, or produce, the different colors, upon the length of the waves, is thus at variance with observed fact. The hypothesis of definite intervals is unavailable as a supplement to the