Jump to content

Page:Popular Science Monthly Volume 31.djvu/31

From Wikisource
This page has been validated.
THE SUN'S HEAT.
21

brilliantly incandescent, the conduction of heat from within through solid matter of even the highest conducting quality known to us would not suffice to maintain the incandescence of the surface for more than a few hours, after which all would be darkness. Observation confirms this conclusion so far as the outward appearance of the sun is concerned, but does not suffice to disprove the idea which prevailed till thirty or forty years ago that the sun is a solid nucleus inclosed in a sheet of violently agitated flame. In reality the matter of the outer shell of the sun, from which the heat is radiated outward, must in cooling become denser, and so becoming unstable in its high position, must fall down, and hotter fluid from within must rush up to take its place. The tremendous currents thus continually produced in this great mass of flaming fluid constitute the province of the newly developed science of solar physics, which with its marvelous instrument of research—the spectroscope—is yearly and daily giving us more and more knowledge of the actual motions of the different ingredients, and of the splendid and all-important resulting phenomena.

Now, to form some idea of the amount of the heat which is being continually carried up to the sun's surface and radiated out into space, and of the dynamical relations between it and the solar gravitation, let us first divide that prodigious number (476 × 1021) of horse-power by the number (6⋅1 × 1018) of square metres in the sun's surface, and we find 78,000 horse-power as the mechanical value of the radiation per square metre. Imagine, then, the engines of eight ironclads applied to do all their available work of, say, 10,000 horse-power each, in perpetuity driving one small paddle in a fluid contained in a square metre vat. The same heat will be given out from the square metre surface of the fluid as is given out from every square metre of the sun's surface.

But now to pass from a practically impossible combination of engines and a physically impossible paddle and fluid and containing vessel, toward a more practical combination of matter for producing the same effect: still keep the ideal vat and paddle and fluid, but place the vat on the surface of a cool, solid, homogeneous globe of the same size (⋅697 × 109 metres radius) as the sun, and of density (1⋅4) equal to the sun's density. Instead of using steam-power, let the paddle be driven by a weight descending in a pit excavated below the vat. As the simplest possible mechanism, take a long vertical shaft, with the paddle mounted on the top of it so as to turn horizontally. Let the weight be a nut working on a screw-thread on the vertical shaft, with guides to prevent the nut from turning—the screw and the guides being all absolutely frictionless. Let the pit be a metre square at its upper end, and let it be excavated quite down to the sun's center, everywhere of square horizontal section, and tapering uniformly to a point at the center. Let the weight be simply the excavated matter of the sun's mass, with merely a little clearance space between it and