Jump to content

Page:Popular Science Monthly Volume 31.djvu/34

From Wikisource
This page has been validated.
24
THE POPULAR SCIENCE MONTHLY.

annulled, so that there shall be perfect freedom for convection-currents to flow unresisted in any direction, except so far as resisted by the viscosity of the fluid, and leave the piece of matter, which we may now call the sun, to himself. He will immediately begin showing all the phenomena known in solar physics. Of course, the observer might have to wait a few years for sun-spots, and a few quarter-centuries to discover periods of sun-spots, but they would, I think I may say, probably, all be there just as they are: because I think we may feel that it is most probable that all these actions are due to the sun's own mass and not to external influences of any kind. It is, however, quite possible, and indeed many who know most of the subject think it probable, that some of the chief phenomena due to sun-spots arise from influxes of meteoric matter circling round the sun. The energy of chemical combination is as nothing compared with the gravitational energy of shrinkage, to which the sun's activity is almost wholly due, but chemical combinations and dissociations may, as urged by Lockyer, be thoroughly potent determining influences on some of the features of non-uniformity of the brightness in the grand phenomena of sun-spots, hydrogen-flames, and corona, which make the province of solar physics. But these are questions belonging to a very splendid branch of solar science with which we are not occupied this evening.

What concerns us at present may be summarized in two propositions:

1. Gigantic convection-currents throughout the sun's liquid mass are continually maintained by fluid, slightly cooled by radiation, falling down from the surface, and hotter fluid rushing up to take its place.

2. The work done in any time by the mutual gravitation of all the parts of the fluid, as it shrinks in virtue of the lowering of its temperature, is but little less than (so little less than, that we may regard it as practically equal to[1]) the dynamical equivalent of the heat that is radiated from the sun in the same time.

The rate of shrinkage corresponding to the present rate of solar radiation has been proved to us, by the consideration of our dynamical model, to be thirty-five metres on the radius per year, or one ten-thousandth of its own length on the radius per two thousand years. Hence, if the solar radiation has been about the same as at present for two hundred thousand years, his radius must have been greater by one per cent two hundred thousand years ago than at present. If we wish to carry our calculations much farther back or forward than two hundred thousand years, we must reckon by differences of the reciprocal of the sun's radius, and not by differences simply of the radius, to take into account the change of density (which, for example, would be three per

  1. "On the Age of the Sun's Heat," by Sir William Thomson ("Macmillan's Magazine, March, 1862); and Thomson and Tait's "Natural Philosophy," second edition, vol. i, part ii, Appendix E.