multiply the chances of discovery, and widen the prospect of national advancement." Thus early, you will see, I was alive to the importance of technical education; and I am no less alive to it now. You will not, therefore, misunderstand me when I say that to keep technical education from withering, and to preserve the applications of science from decay, the roots of both of them must be well imbedded in the soil of original investigation. And here let it be emphatically added, that in such investigation practical results may enter as incidents, but must never usurp the place of aims. The true son of science will pursue his inquiries irrespective of practical considerations. He will ever regard the acquisition and expansion of natural knowledge—the unraveling of the complex web of Nature by the disciplined intellect of man—as his noblest end, and not as a means to any other end. And what has been the upshot of science thus pursued? Why, that the investigator has over and over again tapped springs of practical power which otherwise he would never have reached. Illustrations are here manifold. I might point to the industries which affiliate themselves with Faraday's discovery of benzol, and with his discovery of the laws of electrolysis. But I need not go further than the fact that in this our day a noble and powerful profession has been called into existence by his discovery of magneto-electricity. The electric lamps which mildly illuminate our rooms, the foci which flood with light of solar brilliancy our railway-stations and public halls, can all be traced back to an ancestral spark so small as to be barely visible. With impatient ardor Faraday refused to pause in his quest of principles to intensify his spark. That work he deliberately left to others, confidently predicting that it would be accomplished. And, prompted by motives both natural and laudable, but which had never the slightest influence on Faraday, others have developed his spark into the splendors which now shine in our midst.
It would be a handsome jubilee present, if it were a possible one, to roll up the career of Faraday into portable form, and to offer it to the Queen as the achievement of one of Her Majesty's most devoted subjects during her own reign. Faraday's series of great discoveries, however, began in 1831, which throws his work five or six years too far back. During the rest of his fruitful life he was a loyal son of the Victorian epoch. But, passing beyond the limitations of the individual, what is science, as a whole, able to offer, on the golden wedding of the Queen with her people? A present of the principle of gravitation—a handing over to Her Majesty of the bit and bridle whereby the compelling intellect of Newton brought the solar system under the yoke of physical laws—would surely be a handsome offering. I mention this case of known and conspicuous grandeur, in order to fix the value of another generalization which the science of her reign can proudly offer to the Queen. Quite fit to take rank with the principle of gravitation—more momentous if that be possible—is that