warming the gas, and also the law discovered by Charles, that the proportional expansion of all gases between given temperatures is the same.
The dynamical theory also tells us what will happen if molecules of different masses are allowed to knock about together. The greater masses will go slower than the smaller ones, so that, on an average, every molecule, great or small, will have the same energy of motion.
The proof of this dynamical theorem, in which I claim the priority, has recently been greatly developed and improved by Dr. Ludwig Boltzmann. The most important consequence which flows from it is, that a cubic centimetre of every gas at standard temperature and pressure contains the same number of molecules. This is the dynamical explanation of Gay-Lussac's law of the equivalent volumes of gases. But we must now descend to particulars, and calculate the actual velocity of a molecule of hydrogen.
A cubic centimetre of hydrogen, at the temperature of melting ice and at a pressure of one atmosphere, weighs 0.00008954 gramme. We have to find at what rate this small mass must move (whether altogether or in separate molecules makes no difference) so as to produce the observed pressure on the sides of the cubic centimetre. This is the calculation which was first made by Dr. Joule, and the result is 1,859 metres per second. This is what we are accustomed to call a great velocity. It is greater than any velocity obtained in artillery practice. The velocity of other gases is less, as you will see by the table, but in all cases it is very great as compared with that of bullets.
We have now to conceive the molecules of the air in this hall flying about in all directions, at a rate of about seventeen miles in a minute.
If all these molecules were flying in the same direction, they would constitute a wind blowing at the rate of seventeen miles a minute, and the only wind which approaches this velocity is that which proceeds from the mouth of a cannon. How, then, are you and I able to stand here? Only because the molecules happen to be flying in different directions, so that those which strike against our backs enable us to support the storm which is beating against our faces. Indeed, if this molecular bombardment were to cease, even for an instant, our veins would swell, our breath would leave us, and we should, literally, expire. But it is not only against us or against the walls of the room that the molecules are striking. Consider the immense number of them, and the fact that they are flying in every possible direction, and you will see that they cannot avoid striking each other. Every time that two molecules come into collision, the paths of both are changed, and they go off in new directions. Thus each molecule is continually getting its course altered, so that in spite of its great velocity it may be a long time before it reaches any great distance from the point at which it set out.