If we wish to form a mental representation of what is going on among the molecules in calm air, we cannot do better than observe a swarm of bees, when every individual bee is flying furiously, first in one direction, and then in another, while the swarm, as a whole, either remains at rest, or sails slowly through the air.
In certain seasons, swarms of bees are apt to fly off to a great distance, and the owners, in order to identify their property when they find them on other people's ground, sometimes throw handfuls of flour at the swarm. Now, let us suppose that the flour thrown at the flying swarm has whitened those bees only which happened to be in the lower half of the swarm, leaving those in the upper half free from flour.
If the bees still go on flying hither and thither in an irregular manner, the floury bees will be found in continually increasing proportions in the upper part of the swarm, till they have become equally diffused through every part of it. But the reason of this diffusion is not because the bees were marked with flour, but because they are flying about. The only effect of the marking is to enable us to identify certain bees.
We have no means of marking a select number of molecules of air, so as to trace them after they have become diffused among others, but we may communicate to them some property by which we may obtain evidence of their diffusion.
For instance, if an horizontal stratum of air is moving horizontally, molecules diffusing out of this stratum, into those above and below, will carry their horizontal motion with them, and so tend to communicate motion to the neighboring strata, while molecules diffusing out of the neighboring strata into the moving one will tend to bring it to rest. The action between the strata is somewhat like that of two rough surfaces, one of which slides over the other, rubbing on it. Friction is the name given to this action between solid bodies; in the case of fluids it is called internal friction or viscosity.
It is in fact only another kind of diffusion—a lateral diffusion of momentum, and its amount can be calculated from data derived from observations of the first kind of diffusion, that of matter. The comparative values of the viscosity of different gases were determined by Graham in his researches on the transpiration of gases through long, narrow tubes, and their absolute values have been deduced from experiments on the oscillation of disks by Oscar Meyer and myself.
Another way of tracing the diffusion of molecules through calm air is to heat the upper stratum of the air in a vessel, and so observe the rate at which this heat is communicated to the lower strata. This, in fact, is a third kind of diffusion—that of energy, and the rate at which it must take place was calculated from data derived from experiments on viscosity before any direct experiments on the conduction of heat had been made. Prof. Stefan, of Vienna, has recently, by a very delicate method, succeeded in determining the conductivity of