Jump to content

Page:Popular Science Monthly Volume 43.djvu/494

From Wikisource
This page has been proofread, but needs to be validated.
THE POPULAR SCIENCE MONTHLY.

restriction may conceivably follow from a limitation in the number of cell-generations possible for the cells of each organ and tissue" (p. 28).

"The above-mentioned considerations show us that the degree of reproductive activity present in the tissues is regulated by internal causes while the natural death of an organism is the termination—the hereditary limitation—of the process of cell-division, which began in the segmentation of the ovum" (p. 80).

Now though in the above extracts there is mention of "internal causes "determining" the degree of reproductive activity" of tissue cells, and though, on page 28, the "causes of the loss" of the power of unlimited cell-production "must be sought outside the organism, that is to say, in the external conditions of life"; yet the doctrine is that somatic cells have become constitutionally unfitted for continued cell-multiplication.

"The somatic cells have lost this power to a gradually increasing extent, so that at length they became restricted to a fixed, though perhaps very large, number of cell-generations" (p. 28).

Examination will soon disclose good reasons for denying this inherent restriction. We will look at the various causes which affect their multiplication and usually put a stop to increase after a certain point is reached.

There is first the amount of vital capital given by the parent; partly in the shape of a more or less developed structure, and partly in the shape of bequeathed nutriment. Where this vital capital is small, and the young creature, forthwith obliged to carry on physiological business for itself, has to expend effort in obtaining materials for daily consumption as well as for growth, a rigid restraint is put on that cell-multiplication required for a large size. Clearly the young elephant, starting with a big and well-organized body, and supplied gratis with milk during early stages of growth, can begin physiological business on his own account on a great scale; and by its large transactions his system is enabled to supply nutriment to its multiplying somatic cells until they have formed a vast aggregate—an aggregate such as it is impossible for a young mouse to reach, obliged as it is to begin physiological business in a small way. Then there is the character of the food in respect of its digestibility and its nutritiveness. Here, that which the creature takes in requires much grinding-up, or, when duly prepared, contains but a small amount of available matter in comparison with the matter that has to be thrown away; while there, the prey seized is almost pure nutriment, and requires but little trituration. Hence, in some cases, an unprofitable physiological business, and in other cases a profitable one; resulting in small or large supplies to the multiplying somatic cells. Further, there has to be noted the grade of visceral development, which, if low, yields only crude nutriment slowly distributed, but which, if high, serves by its good appli-