another, even in places of the same parallel of latitude. One or two examples may be taken to illustrate these points. The temperature off Rio Janeiro in latitude 20º south was found by the Challenger to be 0·6º C. at a depth of 2,150 fathoms. In a similar latitude north of the equator at a depth of 2,900 fathoms the temperature was found to be 2·2º C, and at a point near Porto Rico there is a deep hole of 4,561 fathoms, with a bottom temperature of 2·2º C.
Again it has been shown by the American expedition that the temperature of the water at the deepest point in the Gulf of Mexico, 2,119 fathoms, is the same as that of the bottom of the Straits of Yucatan, 1,127 fathoms, namely, 4·1º C. And, passing to another part of the world altogether, we find in the small but deep sea that lies between the Philippines and Borneo that, at a depth of 2,550 fathoms, the temperature is 10·2º C. These facts then show that, although at the bottom of the deep seas the water is always very cold, the degree of coldness is by no means constant in the same latitude for the same depth.
We must now return to the polar currents. We have assumed above that these currents do exist, and it is probable that by this time the reader must have seen why they are assumed to exist. The water at the bottom of the ocean is exceedingly cold. Where does this coldness come from? It is obvious that in temperate and tropical climes it does not come from the surface. Nor is it at all probable that it comes from the earth upon which the water rests; for, if it were so, the temperature for water of a given depth would always be the same. We should not find the bottom temperature of 2·4º C. at 2,900 fathoms off Rio de la Plata and a temperature of 2·2º F. in 4,561 fathoms off Porto Rico.
In fact, the only hypothesis that can with any show of reason be put forward to account for the temperature of the bottom of the ocean is that which derives its coldness from the polar ice.
Perhaps it is of the nature of an assumption to say that there are no rapid currents and tides in the abysmal depths of the ocean, for we have no means of demonstrating or even of calculating the rate of flow of these waters. But it is a reasonable hypothesis and one that we may well use until the contrary is proved.
A fact of some importance that supports this hypothesis, as regards some parts of the ocean at least, is presented by the sea-anemones. Many of the shallow-water actinians are known to possess minute slits in the tentacles and disk, affording a free communication between the general body cavity or cœlenteron and the exterior. In many deep-sea forms the tentacles are considerably shorter and the apertures larger than they are in shallow-water forms. It is difficult to believe that such forms, perforated by, comparatively speaking, large holes, could manage to live in rapid-