erly adjusted concave glasses to carry the focus farther back. When the eye is too short, the focus is behind the retina, and the person is far-sighted and must wear convex glasses. The first condition is called myopia, and the second, hypermetropia; but in most persons who are obliged to wear convex glasses in advanced
Fig. 2.—Diagrammatic Section of the Human Eye.
life, the crystalline lens has become flattened and inelastic, the diameter of the eye being unaltered. This condition is called presbyopia, which means a defect in vision due to old age.
One of the wonderful things about the eye is the mechanism by which a perfect image is formed. What is called the area of distinct vision is a depression in the yellow spot of the retina, which is probably not more than a thirty-sixth of an inch in diameter. It is with this little spot that we examine minute details of objects. If we receive the rays of light from an object upon a double-convex lens and throw them upon a screen in a darkened room, the image of the object appears upon the screen; but in order to render this image even moderately distinct it is necessary to carefully adjust the lens, or the combination of lenses, to a certain distance, which is different for lenses of different curvatures. In the human eye the adjustment is most accurately made, almost instantaneously, for any desired distance, not by changing the distance between the crystalline lens and the retina, but by changing the curvature of the crystalline lens itself. The way in