Jump to content

Page:Popular Science Monthly Volume 45.djvu/268

From Wikisource
This page has been proofread, but needs to be validated.
254
THE POPULAR SCIENCE MONTHLY.

different manner. Its greatest action is where it is deepest—in the middle of the ice stream—while water acts least where it is deepest, and more forcibly at the side than in the middle. The lake is, no doubt, deepest in the line of the old river, where the valley was lowest; and that may well have been nearer the southern than the northern side of the lake.

Another frequently urged objection is, that as the glacier has not widened the narrow valley from Martigny to Bex it could not have eroded a lake nearly a thousand feet deep. This seems to me a complete non sequitur. As a glacier erodes mainly by its vertical pressure and by the completeness of its grinding armature of rock, it is clear that its grinding power laterally must have been very much less than vertically, both on account of the smaller pressure because it would mold itself less closely to the ever-varying rocky protuberances, and mainly, perhaps, because at the almost vertical sides of the valley it would have a very small stony armature, the blocks continually working their way downward to the bottom. Thus, much of the ice in contact with the sides of narrow ravines might be free of stones, and would therefore exert hardly any grinding power. It is also quite certain that the ice in this narrow valley rose to an enormous height, and that the chief motion and also the chief erosion would be on the lateral slopes, while the lower strata, wedged in the gorge, would be almost stationary.

The most recent researches, according to M. Falsan, show that the thickness of the ice has been usually underestimated. A terminal moraine on the Jura at Chasseron is four thousand feet above the sea, or twenty-seven hundred and seventy feet above Geneva. In order that the upper surface of the ice should have had sufficient incline to flow onward as it did, it was probably five thousand or six thousand feet thick below Martigny and four thousand or five thousand feet over the middle of the lake. It is certain, at all events, that whatever thickness was necessary to cause onward motion, that thickness could not fail to be produced, since it is only by the onward motion to some outlet or lowland where the ice can be melted away as fast as it is renewed that indefinite enlargement of a glacier is avoided. The essential condition for the formation of a glacier at all is that more ice should be produced annually than is melted away. So long as the quantity produced is on the average more than that melted, the glaciers will increase; and as the more extended surface of ice, up to a certain point, by forming a refrigerator helps its own extension, a very small permanent annual surplus may lead to an enormous extension of the ice. Hence, if at any stage in its development the end of a glacier remains stationary, either owing to some obstacle in its path or to its having reached a level plain.