object is concerned, than a larger glass. The larger the object glass and the higher the power, the greater are the atmospheric difficulties. A small telescope will perform very well on a night when a large one is helpless.
Turn the glass upon β (Rigel), the white first-magnitude star in Orion's left foot. Observe whether the image with a high power is clear, sharp, and free from irregular wisps of stray light. Look at the rings in and out of focus, and if you are satisfied with the performance, try for the companion, A good three-inch is certain to show it, except in a bad state of the atmosphere, and even then an expert can see it, at least by glimpses. The companion is of the ninth magnitude, some say the eighth, and the distance is about 9·5", angle of position (hereafter designated by p.) 199°.[1] Its color is blue, in decided contrast with the white light of its great primary. Sir John Herschel, however, saw the companion red, as others have done. These differences are doubtless due to imperfections of the eye or the telescope. In 1871 Burnham believed he had discovered that the companion was an exceedingly close double star. No one except Burnham himself ever succeeded in dividing it, and he could only do so at times. Afterward, when he was at Mount Hamilton, he tried in vain to split it with the great thirty-six-inch telescope, in 1889, 1890, and 1891. His want of success induced him to suggest that the component stars were in rapid motion, and so, although he admitted that it might not be double after all, he advised that it should be watched for a few years longer.
Rigel has been suspected of a slight degree of variability. It is evidently a star of enormous actual magnitude, for its parallax escapes trustworthy measurement. It can only be ranked among the very first of the light-givers of the visible universe. Spectroscopically it belongs to a peculiar type which has very few representatives among the bright stars, and which has been thus described: "Spectra in which the hydrogen lines and the few metallic lines all appear to be of equal breadth and sharp definition." Rigel shows a line believed to represent magnesium; but while it has iron lines in its spectrum, it exhibits no evidence of the exist-
- ↑ The angle of position measures the inclination to the meridian of a line drawn between the principal star and its companion; in other words, it shows in what direction from the primary we must look for the companion. It is reckoned from 0° up to 360°, beginning at the north point and passing around by east through south and west to north again. Thus, if the angle of position is 0° or 360°, the companion is on the north side of the primary; if the angle is 90º, the companion is to the east; if 180°, to the south; if 270°, to the west, and so for intermediate angles. It must be remembered, however, that in the field of the telescope the top is south and the bottom north, unless a prism is used, when directions become complicated. East and west can be readily identified by noticing the motion of a star through the field; it moves toward the west and from the east.