trine of the immutability of species. It has been mainly associated in recent days with the honored name of Agassiz, but with him has disappeared the last defender of it who could claim the attention of the world. Few now are found to doubt that animals separated by differences far exceeding those that distinguished what we know as species have yet descended from common ancestors. But there is much less agreement as to the extent to which this common descent can be assumed, or the process by which it has come about. Darwin himself believed that all animals were descended from "at most four or five progenitors"—adding that "there was grandeur in the view that life had been originally breathed by the Creator into a few forms or one." Some of his more devoted followers, like Prof. Haeckel, were prepared to go a step further and to contemplate a crystal as the probable ancestor of the whole fauna and flora of this planet.
To this extent the Darwinian theory has not effected the conquest of scientific opinion; and still less is there any unanimity in the acceptance of natural selection as the sole or even the main agent of whatever modifications may have led up to the existing forms of life. The deepest obscurity still hangs over the origin of the infinite variety of life. Two of the strongest objections to the Darwinian explanation appear still to retain all their force.
I think Lord Kelvin was the first to point out that the amount of time required by the advocates of the theory for working out the process they had imagined could not be conceded without assuming the existence of a totally different set of natural laws from those with which we are acquainted. His view was not only based on profound mechanical reasoning, but it was so plain that any layman could comprehend it. Setting aside arguments deduced from the resistance of the tides, which may be taken to transcend the lay understanding, his argument from the refrigeration of the earth requires little science to apprehend it. Everybody knows that hot things cool, and that according to their substance they take more or less time in cooling. It is evident from the increase of heat as we descend into the earth that the earth is cooling, and we know by experiment, within certain wide limits, the rate at which its substances, the matters of which it is constituted, are found to cool. It follows that we can approximately calculate how hot it was so many million years ago. But if at any time it was hotter at the surface by 50° Fahr. than it is now, life would then have been impossible upon the planet, and therefore we can without much difficulty fix a date before which organic life on earth can not have existed. Basing himself on these considerations. Lord Kelvin limited the period of organic life upon the earth to a hundred million years, and Prof. Tait in a still more penurious spirit cut that hundred down to ten. But on the