Jump to content

Page:Popular Science Monthly Volume 46.djvu/677

From Wikisource
This page has been proofread, but needs to be validated.
THE SCIENTIFIC WORK OF TYNDALL.
659

years of labor within these walls lie ranged over a vast field, and accumulated results of a very varied character, important not only to the cultivators of the physical sciences, but also to the biologist. All that I can hope to do is to bring back to your recollection the more salient points of his work, and to illustrate them where possible by experiments of his own devising.

In looking through the catalogue of scientific papers issued by the Royal Society, one of the first entries under the name of Tyndall relates to a matter comparatively simple, but still of some interest. It has been noticed that when a jet of liquid is allowed to play into a receiving vessel, a good deal of air is sometimes carried down with it, while at other times this does not happen. The matter was examined experimentally by Tyndall, and he found that it was closely connected with the peculiar transformation undergone by a jet of liquid which had been previously investigated by Savart. A jet as it issues from the nozzle is at first cylindrical, but after a time it becomes what the physiologists call varicose; it swells in some places and contracts in others. This effect becomes more exaggerated as the jet descends, until the swellings separate into distinct drops, which follow one another in single file. Savart showed that under the influence of vibration the resolution into drops takes place more rapidly, so that the place of resolution travels up closer to the nozzle.

Tyndall's observation was that the carrying down of air required a jet already resolved into drops when it strikes the liquid. I hope to be able to show you the experiment by projection upon the screen. At the present moment the jet is striking the water in the tank previous to resolution into drops, and is therefore carrying down no air. If I operate on the nozzle with a vibrating tuning fork, the resolution occurs earlier, and the drops now carry down with them a considerable quantity of air.

Among the earlier of Tyndall's papers are some relating to ice, a subject which attracted him much, probably from his mountaineering experiences. About the time of which I am speaking Faraday made interesting observations upon a peculiar behavior of ice, afterward called by the name of regelation. He found that if two pieces of ice were brought into contact they stuck or froze together. The pressure required to produce this effect need not be more than exceedingly small. Tyndall found that if fragments of ice are squeezed they pack themselves into a continuous mass. We have here some small ice in a mold, where it can be subjected to a powerful squeeze. The ice under this operation will be regelated, and a mass obtained which may appear almost transparent, and as if it had never been fractured at all. The flow of glaciers has been attributed to this action, the fractures which the stresses produce being mended again by regelation. I