Jump to content

Page:Popular Science Monthly Volume 5.djvu/155

From Wikisource
This page has been validated.
HAVE PLANTS A PEDIGREE?.
143

the coroline with the calycine leaves, and the fruit between this line and the rind represents the calycine leaves, grown thick and succulent.

Now, the flower of this Kittanning tree appears as a mere rudiment. How, if this theory is true, should the fruit appear? The pistillate whorl is wanting, and in theory the apple should have no core. It has none, but in its place a large cavity, as shown in Fig. 11. The stamens are rudimental, and the petals are represented by five little bud-scales. Theoretically, then, we should find but little fruit between the core-cavity and the fibrous line. There is but little, as the cut will show. The calyx is better developed, and we should find more fruit between the fibrous line and the rind—as we do. The flower starts with all the essential organs of a flower, and, before the inner whorls are arrested, enough vitality is given to the outer whorl to start it on the way toward an apple. And with the lack of development in the inner whorls the outer one develops cork cells, and the rind takes on the character of bark!

This is Nature teaching by what is abnormal. Let us scrutinize her where she seems most regular and orderly.

The acorn, like the apple, is seen by everybody and known by scarcely anybody. We will take a full-grown acorn in its cup and cut it through about midway from top to base. We shall find five little roundish bodies pressed up close against the shell. What are they? and how came they here? We consult the flower, and find (in the fertile one) a style with a three-lobed stigma. The pistil, then, represents three transformed and infolded leaves. When the flower is a little more advanced, we will cut through the lower part of the pistil and examine a section. This part becomes the ovary, and we find in our section three partition-walls radiating from the circumference to the centre and dividing the ovary into three compartments. In this tripartite structure we find our three leaves, the infolded blades cohering along parts of their surface and forming the partition-walls. On each of these partitions we see two ovules. The ovules represent leaves budding out on the margin of the pistil-leaf, and thus every ovary, in theory, should have at the very least as many ovules as there are leaves composing it. In the flower we have now the plan of the acorn. The surface of the ovary will become a shell. The six ovules will grow and ripen into six seeds. Cutting through the shell of the full-grown acorn we shall find it to contain three chambers, and each chamber two naked acorns. We find nothing of the sort! Where was the slip? Early in the acorn's life one of the six ovules gets the start of its neighbors and takes to itself all the nutriment. It grows too large for its chamber, and breaks the partition-walls. It grows to the measure of all the chambers, fills them, and pushes its shriveled brethren up against the shell-wall where you see them, five little starved-out things which once were possible oaks! Strange, is it not? And how passing strange if the oak were made so by "special creation!"