Jump to content

Page:Popular Science Monthly Volume 55.djvu/824

From Wikisource
This page has been validated.
802
POPULAR SCIENCE MONTHLY.

it. Do we ask any such questions when we talk of teaching him to read and write? Oh, no! we all acknowledge that reading and writing are useful, practical, and indispensable arts, which every human being not infirm or defective should learn. Now, elementary mathematics, which represents a tolerably extended equipment, is no less useful and indispensable than the knowledge of reading and writing, and I assert further, what may seem paradoxical to many, that it can be assimilated with much less fatigue than the earliest knowledge of reading and writing, provided always that instead of proceeding in the usual way and giving lessons bristling with formulas and rules, appealing to the memory, imposing fatigue, and producing nothing but disgust, we adopt the philosophical method of conveying ideas to the child by means of objects within reach of his senses. The teaching should be wholly concrete and applied only to the contemplation of external objects and their interpretation, and the instruction should be given continually, especially during the primary period, under the form of play. No thing is easier than this, then, in arithmetic; for instance, to use dice, beans, balls, sticks, etc., and by their aid give the child ideas of numbers.

Do we do anything of this kind? When I was taught to read and write I knew how to write the figure 2 before I had any idea of the number two. Nothing is more radically contrary to the normal working of the brain than this. The notion of numbers—up to 10, for example—should be given to the child before accustoming him to trace a single character. That is the only way of impressing the idea of number independently of the symbol or the formula which is only too ready to take the place in the mind of the object represented by it.

When a child has learned to count through the use of such objects as I have mentioned he may be taught what is called the addition table. This table can be learned by heart easily enough, but when we reach the multiplication table we come upon one of the tortures of childhood. Would it not be simpler and easier to make the children construct these tables, instead of making them learn them?

Let us first take the addition table, and suppose that we trace ten columns on suitably ruled paper, at the top of which we write the first ten numbers, for example, and then write them again at the beginning of a certain number of horizontal lines (Fig. 1). Let us suppose, too, that we have a box divided into compartments arranged like the squares in our table, into which we put heaps of balls, beans, or dice corresponding to the numbers indicated in the table. The child will take, for example, two balls from one compartment and