Jump to content

Page:Popular Science Monthly Volume 55.djvu/827

From Wikisource
This page has been validated.
MATHEMATICS FOR CHILDREN.
805

about thirty years ago by Jean Macé in a little book entitled L'Arithmétique du Grand-Papa—Grandpa's Arithmetic—which made some impression when it appeared, but has been substantially forgotten.

In this method I attach much importance to giving these exercises a form of play. I believe that nothing in primary instruction should savor of obligation and fatigue. It would, on the other hand, be better to try to induce the child to desire himself to go on, and it would always be well to try to give him the illusion, in all stages of instruction, that he is the discoverer of the facts we wish to impress upon his mind.

We need not stop with arithmetic, but may go on and give the child a little geometry. To accomplish this we should give him the idea of geometrical objects, and to some extent their nomenclature, Fig. 3. and this can be done without causing fatigue. To accomplish this he should be taught to draw, however rudely. He can begin with straight lines, of which he soon learns the properties; then, when he has drawn several lines side by side, he will learn that they are parallels and will never meet. He will learn, too, after he has drawn three intersecting lines, that the figure within them is called a triangle, that the figure formed by two parallel lines meeting two other parallels is a parallelogram, and he can go on to make and learn about polygons, etc (Fig. 3). All this nomenclature will get into his head without giving abstract definitions, but in such a way that when he sees a geometrical object of definite form he will recognize it at once and give it the name that belongs to it.

In the practical matter of the measurement of areas we convey immediate comprehension as to many figures without special effort, provided we do not present the demonstration in professional style, limiting ourselves to making the pupil comprehend or feel things so clearly and definitely that it shall be equivalent, as to the satisfaction of his mind, to an absolutely rigorous demonstration. At any rate, he will be better provided for the future than by rigorous