electro-motive force to produce death, but the shock is nevertheless very severe. Horses and cattle would be killed outright, as these animals are not able to withstand as strong a shock as human beings. To render the third-rail system safer, and also to improve the insulation of the conducting rail, the construction illustrated in Fig. 31 has been devised. The only difference between it and Fig. 29 is that the rail b, instead of resting upon the ties between the tracks, is carried upon a side support c c and is housed in with boards a a. To take the current from it a wheel is mounted upon a shaft projecting from the side of the car truck.
From the foregoing brief description of the essential features of the several systems devised for conveying current to the moving car by means of conductors placed underground or upon the surface, it can be seen that while the result can be accomplished in many ways, and is actually accomplished in a number of instances, nothing has been brought forward so far that is as free from objection as the simple trolley, if we disregard the unsightliness of the latter. It is this unsightliness that has created a demand for something else, but the substitutes, while capable of doing the work, are far more costly and can not be said to be as reliable under all conditions of weather.
The sphere of action of the electric-railway motor is not confined to street railways or suburban transit, but extends to the legitimate domain of the steam locomotive. In many places electric locomotives are used to move freight trains made up of cars of the largest capacity, this same work having been done formerly by steam locomotives. In the city of Baltimore, the Baltimore and Ohio Railroad uses electric locomotives, of greater capacity than any steam locomotives so far made, to draw trains through the tunnel that passes under the city. The general appearance of an electric locomotive can be judged from Fig. 32, which shows an engine of average size at the head of a long freight train.