the legs and the segments on the underside of the body. It may be readily done, however, by immersing it in clear water and manipulating it with a brush. If now it is again dried and placed on the glass it will slowly secrete what spare fluid it has in its body, but not the minutest bubble of air is seen to escape. These experiments should be made on glass, for then one may get transmitted light, and the highly refractive outlines of the air bubbles are more quickly detected. Using a higher power with a live cell, new features may be observed. Confining the insect in this way, inclosed in a drop of water, a very clear proof is offered that it gets all the air for its froth in the way I have described. So long as the insect remains surrounded by water not the minutest bubble of air is seen to escape from the body. During this immersion the creature is incessantly struggling to reach the edge of the drop, and no sooner has this been accomplished than it thrusts out its tail and begins the clutching of air and the making of bubbles. The bubbles, however, disappear as soon as made, as the clear water will not preserve them. As the water becomes slightly viscid from the insect's own secretions, the bubbles remain for a longer time. A bubble will be partially released and then held, or even partially withdrawn, between the claspers.
The claspers seem to be the tergal portions of the ninth segment. On the sides of the seventh and eighth segments may be clearly seen leaflike appendages, which are possibly branchial in their nature (Figs. 5 and 6). They are extremely tenuous, and appear like clusters of filaments, slightly adhering together and forming lamellate appendages similar to the gill-like appendages seen in the early stages of Potamanthus, a neuropterous insect, not, however, having the definiteness of these structures. While in
Fig. 5.—Showing underside of posterior extremity of body with appearance of branchiæ. | Fig. 6.—A single branchia under slight pressure. |
Potamanthus one may easily trace the ramifications of the tracheal system, I have not been able to detect a similar connection with these appendages in Aphrophora. Certainly the insect does not depend upon these structures for respiration, as when the creature is perfectly dry it seems to suffer no immediate inconvenience, but