Jump to content

Page:Popular Science Monthly Volume 57.djvu/652

From Wikisource
This page has been proofread, but needs to be validated.
642
POPULAR SCIENCE MONTHLY.

laid down to govern them. Thus, during the period from 1782 to 1800 it was from thirteen to twenty-four days late. In 1812 it was thirty-nine days late. From 1845 to 1856 it was on the average about a month too early. Several recent maxima, notably those from 1895 to 1898, again occurred late. Formulæ have been constructed to show these changes, but there is no certainty that they express the actual law of the case. Indeed, the probability seems to be that there is no invariable law that we can discover to govern it.

Argelander fixed the length of the period at 331.9 days. More recently, Chandler fixed it at 331.6 days. It would seem, therefore, to have been somewhat shorter in recent times. It was at its maximum toward the end of October, 1898. We may, therefore, expect that future maxima will occur in July, 1901; June, 1902; May, 1903; April, 1904, and so on, about a month earlier each year. During the few years following 1903 the maxima will probably not be visible, owing to the star being near conjunction with the sun at the times of their occurrence. The most plausible view seems to be that changes of a periodic character, involving the eruption of heated matter from the interior of the body to its surface, followed by the cooling of this matter by radiation, are going on in the star.

The star Algol, or Beta Persei, as it is commonly called in astronomical language, may, in northern latitudes, be seen on almost any night of the year. In the early summer we should probably see it only after midnight, in the northeast. In late winter it would be seen in the northwest. From August until January one can find it at some time in the evening by becoming acquainted with the constellations. It is nearly of the second magnitude. One might look at it a score of times without seeing that it varied in brilliancy. But at certain stated intervals, somewhat less than three days, it fades away to nearly the fourth magnitude for a few hours, and then slowly recovers its light. This fact was first discovered by Goodrick in 1783, since which time the variations have been carefully followed. The law of variation thus defined is expressed by a curve of the following form:

Fig. 2. Law or Variation of a Stab of the Algol Type.

The idea that what we see in the star is a partial eclipse caused by a dark body revolving round it, was naturally suggested even to the earliest observers. But it was impossible to test this theory until recent times. Careful observation showed changes in the period between the eclipses, which, although not conclusive against the theory, might have seemed to make it somewhat unlikely. The application of the spectroscope to the determination of radial motions, enabled