sodic chloride, is placed in water a certain proportion of the molecules of sodic chloride are dissociated into sodium and chlorine ions, that is to say, atoms possessing electric charges, and the electric conductivity of the solution is due to the mobility of these saline ions.
On the electronic theory a certain proportion of the atoms of a conductor are similarly in a state of electronization. The application of an electromotive force to the conductor thus at once causes the electrons to begin to migrate. If we compare conductors and non-conductors we shall see that the former are mostly elementary bodies, the metals and alloys or graphitic carbon, whilst the latter are all very complex substances such as glass, ebonite, the oils, shellac, gutta-percha, etc. These last have large and complex molecules but the good conductors have all simple molecules and small atomic volumes. The exceptions apparently are sulphur and carbon in the form of diamond. When, however, we remember that carbon and sulphur are elements very prone to polymerize and so to speak combine with themselves they may not really be an exception. The electrons may therefore have much more difficulty in exchanging from atom to atom or in making their way between or through the molecules when these are very complex than when they are simple.
The question then may be asked why these free electrons do not all escape from the conductor. The answer is that there must be an equal quantity of electrons and coelectrons or remainders of atoms or of so-called negative and positive ions, and the stronger attraction between these involves the expenditure of work to separate them. The radioactive substances, such as uranium, polonium, radium, actinium and others, to which so much attention has been paid lately, do seem to have the power of emitting their corpuscles or electrons and scattering them abroad, and hence can only do this at the expense of some of their own internal molecular energy or else drawing upon the heat of surrounding bodies.
We come next to the explanation of the familiar fact of electrification by friction. Why is it that when we rub a glass rod with a bit of silk the two things are equally and oppositely electrified? To explain this on the electronic theory we have to consider the state of affairs at the surface of any substance immersed say in air. At the surface where the air and glass meet there will be an electronization of atoms which appears to result in the formation of a double layer of electrons and coelectrons or negative and positive ions. This is probably an attempt on the part of the glass and air to combine chemically together. The same state exists at the surface of the silk. When we rub these two things together these double layers are very roughly treated and are broken up. The whole lot of electrons and coelectrons or residual portions of atoms get mixed up and more or less divided up between the